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ABSTRACT 

 

Modification of Newton's method with higher-order convergence is presented. The modification of Newton's 

method is based on Bi's eighth-order method. Per iteration of the new method requires four-step. Analysis of 

convergence demonstrates that the order of convergence is 12. Some numerical examples illustrate that the 

algorithm is more efficient and performs better than classical Newton's method and other methods. 
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1 INTRODUCTION  
 

In this paper, we apply iterative method to find a simple root x
 of the nonlinear equation ( ) 0f x  , where 

:f D R R   is a scalar function on an open interval D . It is well known that Newton's method is one of the 

best iterative methods for solving a single nonlinear equation by using                     
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                                                                                    (1)  

which converges quadratically in some neighborhood of x
. Many iterative methods have been developed by using 

many different techniques including quadrature formulas, Taylor series and decomposition techniques. For more 

details, see[1-20] and the references therein. King [2] developed a one-parameter family of fourth-order methods, 

which is written as:  
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Where R   is a constant. In particular, the special method for 0.5    is as follows:  
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                                                    (3)  

Based on method (3), Bi et al. [17] developed a one-parameter family of eighth-order method, which is 
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In this paper, based on method (4), we construct modification of Newton's method with higher-order convergence 

for solving nonlinear equations. 

 
2 THE METHOD AND ANALYSIS OF CONVERGENCE 
 

From (4), we construct four-step iterative method in this paper 
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Where ( ) [ , ] [ , , ]( )n n n n n n n nF x f z y f z x x z y    (see[17]). 

We state the following convergence theorem for the method (5). 

Theorem 1 Suppose that 
2( )f C D , assume that the function :f D R R   has a single root x D , 

where D  is an open interval. If the initial point 0x  is sufficiently close to x
, then the method defined by (5) has 

twelfth-order convergence.  

Proof: Let x
be a single root of nonlinear equation ( )f x . Using Taylor's expansion, we have 
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From (6) and (7), we obtain  
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Expanding   
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Substituting (6)-(11) into (12), and simplifying, we have 
2 2 3 3 4 5

2 3 2 4 2 2 3( ) ( )[ (2 2 ) (3 5 7 ) ( )]n n n n nf x f x c e c c e c c c c e o e                    (13)  

With (6) and (13), using Taylor's expansion, and simplifying, we obtain 
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Dividing (13) by (7), using Taylor's expansion, and simplifying, we get 
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Substituting (6), (7), (14), (15) into the second formula of (5), using Taylor's expansion, and simplifying, we have 
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By (6),(16),(17), using Taylor's expansion, and simplifying, we get  
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With (11),(12),(16),(17), using Taylor's expansion, and simplifying, we obtain  
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Substituting (7), (11), (16), (18), (19) into ( )nF x  of (5), using Taylor's expansion, and simplifying, we have 
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Dividing (17) by (20), using Taylor's expansion, and simplifying, we get 
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From (6),(17), using Taylor's expansion, and simplifying, we obtain 
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Substituting (16),(21),(22) into the third formula of (5), using Taylor's expansion, and simplifying, we have  
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Similar to (13), we obtain 
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Similar to (22), we get 
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Dividing (24) by (20), using Taylor's expansion, and simplifying, we obtain  
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Substituting (23),(25),(26) into the fourth formula of (5), using Taylor's expansion, and simplifying, we get the error 

equation: 
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This means that the method defined by (5) has twelfth-order convergence. The proof is completed. 

 

Remark The order of convergence of the iterative method (5) is 12. Per iteration of the iterative method (5) requires 

four evaluations of the function, namely, ( ), ( ), ( ), ( )n n n nf x f y f z f w  and one evaluation of first derivative 

( )nf x . We take into account the definition of efficiency index [21] as 

1

wp , where p is the order of the method 

and w  is the number of function evaluations per iteration required by the method. If we suppose that all the 

evaluations have the same cost as function one, we have that the efficiency index of the method (5) is 

5 12 1.644  which is better than 2 1.414  of Newton's method, 
3 3 1.442 of method[8,19], 
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3 4 1.587  of method[2], 
3 5 1.495  of method[12],

4 6 1.565  of method[7], 
4 7 1.627  of 

method[9,20].  

 
3 NUMERICAL RESULTS 
 

NC in Table 1 means that the method does not converge to the root. Now, we employ the four-step method(5)(G1) 

suggested in this paper to solve some nonlinear equations and compare them with three-step iterative methods with 

eighth-order convergence[17](G2, (36)), some variants of Ostrowskis method[9](G3,(8)), sixth-order variants of 

Ostrowski root-finding methods[7](G4,(28)-(30)), a family of fifth-order iterations composed of Newton 

methods[12](G5,(10)), a family of fourth order methods for nonlinear equations[2](G6,(2.4)), A modification of 

Newton method with third-order convergence[8](G7,(10)) and Newton's method(G8). 

Table 1 Comparison of various iterative methods 

F(x) G1 G2 G2 G3 G4 G5 G6 G6 G7 G8 

parameter 0   2   0   2   1

1








 

 1 
 

3 
 

  

1 0, 4.9f x 
 

5 NC NC 16 20 248 18 15 15 16 

2 0, 4.8f x  
 

10  12 12 16 20 20 18 NC NC NC 

3 0, 2.25f x  
 

10 12 12 16 20 NC 15 15 NC 12 

4 0, 4.6f x   10 12 12 16 20 20 24 18 18 20 

5 0, 9.9f x 
 

10 12 12 12 20 NC 18 12 15 14 

6 0, 1.5f x 
 

10 16 NC 12 24 NC 12 12 NC NC 

7 0, 8f x 
 

10 NC NC 16 16 260 21 18 12 16 

8 0, 4f x 
 

15 16 16 28 36 36 33 33 36 38 

9 0, 9.8f x 
 

10 12 12 16 20 20 18 15 18 16 

10 0, 15.5f x 
 

5 8 8 12 12 20 12 9 9 10 

11 0, 7.7f x 
 

10 12 12 16 20 24 24 18 18 20 

12 0, 11.9f x 
 

5 8 8 12 12 16 9 9 9 12 

For example, it can be seen that the method(G2), the method(G5), the King's method(G6), the method(G7) and 

Newton's method(G8) have sensitivities to the original iteration value: the method(G2)[17] does not converge to the 

zero 1f  for 0 4.9x  , 6f  for 0 1.5x   and 7f for 0 8.0x   , the method(G5)[12] does not converge to the zero 

3f   for 0 2.25x   ,  

5f  for 0 9.9x   and 6f   for 0 1.5x  , the method(G6)[2] does not converge to the zero 2f for 0 1.8x   , the 

method(G7)[8] does not converge to the zero 2f  for 0 1.8x   , 3f  for 0 2.25x    and 6f  for 0 1.5x  , 

Newton's method does not converge to the zero 2f for 0 1.8x   , and 6f  for 0 1.5x  . Displayed in Table 1 are 

the number of function evaluations (NFE) required such that ( ) 1. 17nf x E  , 1. 17nx x E   . All 

computations were done by using Visual C++ 6.0. In Table 1 we use the following test functions and display the 

approximate zeros x
 found up to the 17th decimal place:  

3

1( ) ( 1) 1f x x    , 2.000000000000000x  . 

2( ) 2 cos( ) 3f x x x x    , 3.03446643069740450x   .  

2 2

3( ) 2x xf x e x      , 2.4905398276083051x  . 

4( ) 1xf x e    , 0.0000000000000000x  . 
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2 2

5( ) 2 5 2sin( ) 3f x x x x x      , 2.3319676558839640x  . 

6( ) sin( ) 2 5xf x x e x   , 2.5232452307325549x   . 

3

7 ( ) 10f x x  , 2.1544346900318837x  . 

2 7 30

8( ) 1x xf x e    , 3.0000000000000000x  . 

5

9( ) 10000f x x x   , 6.3087771299726891x  . 

10

1
( ) 3f x x

x
    , 9.6335955628326952x  .  

11( ) 20xf x e x   , 2.8424389537844471x  . 

12( ) ln( ) 5f x x x   , 8.3094326942315718x  . 

The computational results in Table 1 show that the method (5) requires less NFE than G2, G3, G4, G5, G6, G7 and 

G8. The method (5) has iteration stabilities to the original iteration value. Therefore, they are of practical interest 

and can compete with other methods. 

 
4 CONCLUSION  
 

Based on three-step iterative method [17], we give further modification of the method to obtain higher-order 

convergence iterative method. Several examples show that the new method presented in the paper is more efficient 

and performs better than classical Newton's method and some other methods. 
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