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1. Introduction

Modern agricultural biotechnology has made a great deal of progress
over the past two decades in significantly increasing productivity and
living standards in developing countries. These advancements have
introduced awide array of geneticallymodified crops that are insect resis-
tant, virus resistant, drought resistant, and even nutrient enriched. Take
genetically modified Bacillus thuringiensis (Bt) cotton as an example.
Prior to the invention of Bt cotton, farmerswere forced to choose between
letting cotton bollworms (the primary cotton pest) damage their cotton
yields or sacrificing their own health by spraying their crops with a
greater quantity of pesticides. Bt cotton was devised specifically to coun-
ter bollworm infestations and has been scientifically proven to be
effective in pest resistance (Huang et al., 2002b; Qaim and Zilberman,
2003; Qaim et al., 2006). Emboldened by this scientific evidence, policy
makers around the world have encouraged the adoption of Bt cotton.
However, several studies find that farmers have continued to use exces-
sive amounts of pesticides even after they adopted pest-resistant
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Bt cotton (Huang et al., 2002a; Pemsl and Waibel, 2005; Yang et al.,
2005).1 These findings present a puzzle as to why farmers would deviate
fromprofit-maximizing behavior to spray excessive amounts of pesticides,
especially considering the fact that spraying pesticides is detrimental to
their health. Liu (forthcoming) has suggests that Chinese cotton farmers
were slow to adopt Bt cotton because of their risk preference. It is possible
that farmers who are more risk averse could also be using more pesti-
cides after adopting Bt cotton. This paper uses the same dataset as
Liu (forthcoming) to investigate whether Chinese cotton farmers'
pesticide-use decisions are correlated with their risk preferences.

There is an extensive theoretical literature where farmers' risk
preferences play a role in agricultural production decisions (Feder,
1980; Just and Zilberman, 1983). In determining the relationship
between agricultural decisions and risk preferences, most of the
empirical studies in the literature typically have two approaches
when estimating risk aversion. One is to rely on the assumption of
objective function and advanced econometric technique to impute
the coefficient of risk aversion that will fit the model (Antle, 1988;
Chavas and Holt, 1996; Saha et al., 1994). For example, if a farmer
deviates from profit-maximizing production input choices, the
structural approach would conclude that it is due to individual risk
preference and impute the coefficient of risk aversion. As suggested
by Just and Lybbert (2009) and Just (2008), the assumption of a
1 Bt cotton is not a fix-all solution as it only targets cotton bollworm. Pesticide is still
essential to cotton production post Bt adoption. However, a few papers (Huang et al.,
2002a; Pemsl and Waibel, 2005; Yang et al., 2005) find that farmers are using nearly
3 times more pesticide than the optimal profit maximizing level.
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utility function form and arbitrary heuristics could cause bias when
estimating individual risk aversion. On the other hand, some studies
use wealth as a proxy for risk aversion (Ackerberg and Botticini,
2002; Dubois, 2002; Fukunaga and Huffman, 2009; Laffont and
Matoussi, 1995). Bellemare and Brown (2009) comment that it
could be problematic when wealth is being used as a proxy for risk
aversion, as it could potentially undermine the role of risk preferences
in farming decisions. One contribution to the existing literature is that
all risk preference parameters used in the analysis are being elicited
from artefactual field experiments.2

Starting from Binswanger's (1980, 1981) seminal papers, it is not
uncommon to elicit risk preference where farmers are the subjects
of the experiments. However, there exists a long-standing debate
regarding the external validity of game experiments.3 In this study,
we first elicit farmers' risk preference from an experiment, and
we extend their game behaviors to the agricultural decisions. The
findings from this study bridge the gap between lab experiments
and real world behavior. Similar to research by List (2003),
Schechter (2007), and Fehr and Goette (2007), the findings from
this study suggest that experiment results can predict real world
decisions in the case of Chinese cotton farmers' pesticide use.

Before eliciting the risk preference using the experiment, we first
need to decide on the form of the utility function. The common
approach to characterize individual risk preference is to use expected
utility (EU), inwhich risk aversion is the sole parameter for determining
the curvature of the utility function. On the other hand, in prospect
theory (PT) (Kahneman and Tversky, 1979), the shape of the utility
function is jointly determined by risk aversion, loss aversion (which
measures one's sensitivity to loss compared to gain), and nonlinear
probability weighting (i.e., the individual tendency of overweighting
small [large] probabilities and underweighting large [small] probabili-
ties). As suggested in earlier agricultural economics research, if farmers
follow safety-first principles by setting a target income and minimizing
the probability of severe yield loss below that income (Moscardi and
de Janvry, 1977; Young, 1979), then it is likely that farmers' risk prefer-
ences will be best captured by prospect theory instead of neoclassical
utility theory.4 Ex ante, EU or PT could act as a potential theory for
explaining the cotton farmers' decision making processes; however, it
is not clear which theory is more appropriate. Therefore, we use an
experimental design modeled after that of Tanaka, Camerer, and
Nguyen (TCN) (Tanaka et al., 2010). The major advantage of TCN's
design is that it allows the experiment's results to determine whether
EU or PT better fits the farmers' decision making processes. It allows
us to elicit three risk preference parameters—coefficient of risk aversion,
loss aversion, and nonlinear probability weighting—without rejecting
outright the use of EU theory. Our survey covers 320 cotton farmers
from 16 villages across eight counties in four provinces in China in
2006. We collect information on household characteristics, individual
characteristics, and detailed plot information for the 2006 harvest
and planting season. We relate the farmers' elicited risk preferences
to their pesticide use while controlling for farm and individual
characteristics.

Before interpreting our results, in order to understand how each of
the risk preference parameters would affect optimal pesticide use, we
set up a conceptual framework in which farmers' utility is a function
of income as well as their health. By using more pesticide, farmers
would prevent loss of income but would have to sacrifice their health
due to the danger of pesticide poisoning. Therefore, depending on
2 We adopt the terminology artefactual field experiment from Harrison and List
(2004). Artefactual field experiments are conventional lab experiments but are done
with nonstandard subjects. Hereafter, we will refer to it as the experiment.

3 See Samuelson (2005) for discussion.
4 The applications of these two concepts, “safety-first rule” and “loss aversion,” can

be found in behavioral finance studies (see Camerer and Kunreuther, 1989; Campbell
and Kräussl, 2007; Polkovnichenko, 2005).
one's coefficient of risk aversion, loss aversion and one's reference
points for health and income, the optimal pesticide use would differ.

Our main finding is that controlling for village fixed effects,
farmers who are more risk averse use greater quantities of pesticides.
If the average farmer from our sample became risk neutral, he would
spray approximately 13% less pesticides—a reduction in pesticide use
equivalent to the effect of 6 additional years of education).5 Combin-
ing with the finding from Liu's (Forthcoming) paper on Bt cotton
adoption, we can conclude that more risk averse farmers not only
adopt Bt cotton later, but they also continue to use higher level of pes-
ticide post adoption. Therefore, wealth accumulation associated with
this technological advancement is negatively correlated with farmers'
risk aversion. We also find that farmers who are more loss averse use
lesser quantities of pesticides. It may seem surprising at first glance,
but it is consistent with our conceptual framework and suggestive ev-
idence where farmers behave in a loss averse manner in the health
domain and yet place more weight on the importance of their health
over the importance of money in the loss domain.

We find that more educated farmers seem to better understand
the advantages of using Bt cotton since it requires less pesticides
than regular cotton. For every additional year of education, farmers
reduce pesticide use by 0.56 kg per hectare (~2%). Several other
hypotheses have been put forth by others to explain the overuse of
pesticide, including the deterioration of the bollworm-resistant
quality of Bt cotton seeds, the existence of counterfeit Bt cotton
seed, the incorrect information supplied by extension agents
and the rise of secondary pests. In our study, with our regression
specifications, controlling for village fixed effects, we find no evidence
supporting these alternative hypotheses.6

This paper proceeds as follows. Section 2 provides background on
Bt cotton. Section 3 describes the experiment and dataset and
provides some summary statistics on farmers' characteristics and
describes the experimental design. Section 4 provides background
on pesticide use and the conceptual framework. Section 5 describes
the econometric framework and regression results for pesticide use.
Section 6 concludes.
2. Background

China is one of the largest cotton producers in the world. Unlike
commercial cotton farmers in the United States, Chinese cotton
farmers are generally subsistence farmers who are more risk averse,
less tolerant of pest infestations, and place the highest priority on
resolving severe pest problems (Bentley and Thiele, 1999; Pray et
al., 2002). During the early 1990s, many Chinese cotton farmers
experienced failures in controlling bollworm damage to their
crops due to frequent outbreaks of increasingly pesticide-resistant
bollworm infestations. In an attempt to ameliorate the bollworm
problem, the provincial governments in certain regions of China
began commercializing Bt cotton seeds in 1997.7 Bt cotton seeds are
planted in a similar fashion to traditional cotton seeds, but Bt cotton
seed carries the Bt toxin which targets the cotton bollworm. Using
data collected in 2001, Huang et al. (2002b) found that Bt cotton
adoption leads to a significant decrease in pesticide use. Bt cotton
farmers reduce their total pesticide expenditure by 82%. Chinese
equal to 0.48.
6 It is still possible that these hypotheses can explain cross-village variations of pes-

ticide use. For the purpose of our paper, investigating the role of risk preferences, it is
essential to control for village fixed effects for the following reasons. First, a village can
play a role in determining one's risk preferences (e.g. a particular village may have mo-
re poor quality, less arable land), hence people in the village are more risk averse. Sec-
ond, if we do not have village-fixed effect, we need a lot more information about the
village characteristics that could possibly affect pest severity, which is missing from
our survey.

7 It was a rolling decision. In some provinces Bt cotton was approved in 1998.
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scientists tested bollworm pests with Bt cotton and concluded that
bollworms found in China's cotton fields had not yet become resistant
to Bt cotton (Wu, 2007). Tracking bollworm population over a decade
in 6 provinces in China, Wu et al. (2008) have also shown that
populations of bollworm larvae and bollworm eggs have continually
decreased from 1997 to 2007.

While the bollworm's lack of resistance to Bt cotton is encouraging,
significant problems still exist. Primarily, Chinese cotton farmers are
well known for using excessive amounts of highly toxic pesticides,
and this practice has continued even after the adoption of Bt cotton
(Huang et al., 2002a; Pemsl and Waibel, 2005; Yang et al., 2005).
Huang et al. (2002a) find that Bt cotton farmers applied 11.8 kg per
hectare when the optimal pesticide use ranges from 0.4 kg per hectare
to 4.2 kg per hectare.8 Pemsl and Waibel (2005) find that the optimal
pesticide input level was about 5 kg per hectare in 2004, but that
Chinese farmers applied, on average, 14 kg of pesticides per hectare.
The problem of pesticide overuse is further exacerbated by the fact
that nearly 40% of the pesticides used by Chinese cotton farmers contain
active ingredients that are classified as extremely or highly hazardous
(classes 1a or 1b) by the World Health Organization (WHO).9 There
are an estimated 400 to 500 Chinese cotton farmers who die every
year from pesticide poisoning (Conko and Prakash, 2004). In our
sample, 27% of farmers reported that they have experienced pesticide
poisoning and 38% of them reported that someone in their family has
experienced pesticide poisoning.

A question that naturally arises is: if Bt cotton has proven its
resistance to the cotton bollworm and if farmers know that spraying
pesticides is detrimental to their health, why would farmers spray ex-
cessive quantities of pesticides? The farmers' uncertainty about the
quality of Bt cotton seeds could be a significant factor in their overuse
of pesticides. Existing studies have found that the quality of Bt
cotton seeds varies dramatically. Pemsl (2006) collected leaves from
cotton farmers in Shandong and found that some of the so-called
“Bt” cotton leaves do not contain the Bt trait that is essential to
making the cotton plant resistant to the bollworm.

Due to the high demand for Bt cotton seeds, it is not surprising
that some individuals are trying to exploit the situation for profit
through various nefarious means. Therefore, some lower-quality
seeds have permeated the market through different channels. For
example, some firms and local research institutions release Bt cotton
seeds into the market before obtaining government approval (Yang et
al., 2005). Farmers also reproduce the trademarked Bt cotton seeds
via on-farm propagation despite evidence that these self-propagated
seeds are of lower quality (Pray et al., 2002). Some seed companies
simply repackage their conventional cotton seeds to sell as authentic
Bt cotton seeds with brand labels and logos (Louyang Agricultural
News, 2003). There were an estimated 140 genetically modified
cotton seed varieties available in 2004, making it difficult for farmers
to know which seeds are effective Bt cotton seeds a priori (Pray et al.,
2006). One might think that farmers could learn from their own
experience or from others over time about the quality of seeds from
various sources. However, given that the severity of pest infestation
varies greatly over time and across plots, the amount of learning
accumulated could be limited.

One other reason why farmers may be using excessive amounts of
pesticides is proposed by Wang et al. (2006) who suggest that the
population of secondary pests, mainly mirids, has been slowly rising.
Wang et al. (2006) examine Chinese cotton farmers' pesticide use
using survey data from 2004 and find that Bt cotton farmers use
less pesticides to prevent bollworms, but spray more pesticides in
8 0.4 kg/ha is based on an estimation using the Cobb–Douglas production function.
4.2 kg/ha is based on an estimation that uses a Weibull damage control function.

9 The WHO classifies insecticides into four classes of toxicity. Class 1a is extremely
hazardous (highest toxicity). Class 1b is highly hazardous. Class 2 is moderately haz-
ardous. Class 3 is slightly hazardous.
order to target mirids, relative to non-Bt cotton farmers. Furthermore,
Lu et al. (2010) find some evidence suggesting that the secondary
pest, mirids, have increased in population density, in particular in
areas where Bt cotton adoption is common.

While many of the above reasons are a plausible explanation, in
our study we are focusing on the within-village variation in pesticide
use across farmers. In our empirical analysis, we control for village
fixed effect, which would also control for village-specific pest severity
and the rising of the secondary pest in the village. Village fixed effects
should also control for the potential effects from skewed recommen-
dation of extension agents. Unless the individual-specific error term
is correlated with our elicited risk preference, our results on risk
preferences should remain unbiased. We will have more discussion
in detail in Section 5.

3. Data

3.1. Bt cotton survey

The Bt cotton survey was designed and collected by the Center for
Chinese Agricultural Policy (CCAP), a government-affiliated research
agency, in the winter of 2006. Four provinces (Shandong, Hebei,
Henan, and Anhui) with high Bt cotton adoption rates and similar
cotton growing seasons (April–October) were selected. CCAP selected
two counties per province and two villages per county, and randomly
selected 20 households in each village. The CCAP team compensated
each participating household 10 Yuan for completing the survey
(equivalent to one-third of a daily wage). We interviewed the head
of each household or whoever was most responsible for the farming
activities. In addition, we obtained detailed information on inputs
and outputs used in each cotton plot, perceived pest infestation,
incidence of pesticide poisoning, and past agricultural training
experience. Most farmers are responsible for multiple plots, as arable
land for farming is assigned by the government. Out of the 945 cotton
plots belonging to 320 farmers, 930 of them are used to grow Bt
cotton and the remaining 15 are used to grow conventional cotton.10

The summary statistics at the household level are presented in
Table 1. The average interviewee is about 50 years old and has
completed 7 years of education. The average household in the sample
is assigned 0.59 hectare (ha) of farmland. In the region where we col-
lected the dataset, cotton is the major cash crop and is planted on
0.54 ha of farmland per household with farmers typically practicing
rotational cropping with wheat, the primary grain crop (0.33 ha).
Our sample spends most of their time on the farm, and when produc-
tion on the farm stops, they perform a limited amount of off-farm
work. Ownership of a set of durable goods is used as a proxy for
wealth in 2006.

Table 2 presents the summary statistics at the plot level, breaking
them down by Bt versus non-Bt cotton. Bt cotton is more expensive
than traditional cotton, but farmers who grow Bt cotton spray less
pesticides and experience higher yields. In this paper, wealth is
proxied by the price of durable goods owned per capita and Bt cotton
farmers are statistically wealthier than traditional cotton farmers.
However, without a baseline survey prior to adoption, we cannot
conclude any causality on whether the differential wealth accumula-
tion is due to the planting of Bt cotton or as a cause of difference in
seed choices.

Ideally, we would like to have detailed data on pesticide use and
we need to know the severity of pest problems in the region; then
we would be able to use a production function to estimate whether
farmers overuse specific pesticides. To do so, however, we would
10 In the winter of 2007, the CCAP collected cotton seeds from a subset of our sample.
When researchers tested the seeds in the lab, they found that farmers often
misreported the Bt versus non-Bt status of their seeds. Some so-called “non-Bt” seeds
in fact contained the Bt gene and vice versa.



Table 1
Summary characteristics.

Age 49.52
(8.89)

Education 7.10
(2.96)

Female 0.14
(0.35)

Size of household 4.49
(1.45)

σ (risk aversion) 0.48
(0.33)

λ (loss aversion) 3.47
(3.92)

α (probability weighting) 0.69
(0.23)

Total cotton sown area (ha) 0.54
(0.33)

Total land owned (ha) 0.59
(0.29)

Cotton yield (kg/ha) 3356
(889.8)

Average year of Bt cotton adoption 1998
(1.90)

Household members ever been poisoned 0.40
By pesticide (0.49)

Observations 320

Note: standard deviations are listed in parentheses.

Table 2
Summary characteristics by seed type.

Bt cotton Non Bt

Plot size (ha) 0.18 0.22
(0.15) (0.09)

Amount of pesticide sprayed (kg/ha) 26.37* 37.84*
(19.44) (27.34)

Total pesticide cost (Yuan/ha) 784.46 936.60
(528.55) (877.49)

Cotton yield (kg/ha) 3356* 2092.5*
(889.8) (408.8)

Total cost on seeds (Yuan/ha) 552.51* 254.95*
(424.76) (145.54)

Wealtha (100 Yuan) 1.03* 0.53*
(0.92) (0.58)

Total number of plots 930 15

Note: standard deviations are listed in parentheses. * statistically different at the 5%
level.

a Represented by the total value of durable goods owned per capita in 2006.
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need information on the pesticides' active ingredients. However,
China's pesticide market is extremely fragmented; in our survey
alone, we found more than 50 different pesticide brands/formula-
tions. Many farmers purchase pesticides that are blends of various
brands. It is also difficult to classify these pesticides by the WHO's
toxicity measures because most of the pesticides' packaging does
not contain information on active ingredients. Therefore, in our
analysis, we will only use the total amount and total costs of the pes-
ticides applied by the farmers as a dependent variable.

We also collected information on pesticide poisoning. Farmers were
asked if over the previous 10 years anyone in their household had expe-
rienced any health impairments after mixing and spraying pesticides.
Twenty-nine percent reported that they had experienced at least one
symptom of pesticide poisoning since 1996, with the most frequently
reported symptoms being vomiting (59%), headaches or dizziness
(53%), skin irritation (26%) and restlessness (16%).11 Forty percent
reported that one of their familymembers has experienced pesticide poi-
soning since 1996.We also asked the farmers to report any costs associat-
ed with these health impairments. Seventy-six farmers reported having
some cost associated with pesticide poisoning with the average medical
cost and imputed labor cost being 165 Yuan (approximately five days
worth of wages) per farmer.12
14 The option of choosing either all A or all B is also available. This method of eliciting
switching point is being referred to as monotonic switching. This method assumes ra-
3.2. Experimental design

The Chinese cotton farmers were asked to participate in an experi-
ment after the conclusion of their interviews. We conducted an experi-
ment modeled after that of Tanaka et al. (2010).13 TCN's experiment is
similar to Holt and Laury's (2002)—which offers subjects a series of
pair-wise lotteries of both risky and safe options presented in Table 3.
Take Row1 Series 1 in Table 3 for example: if farmers have chosen lottery
A, there is a 30% chance of winning 20 Yuan and a 70% chance of winning
5 Yuan; if they have chosen lottery B, the riskier option, they have a 10%
chance of winning 34 Yuan and a 90% chance of winning 2.5 Yuan. One
11 The percents add up to over 100 because some farmers reported multiple
symptoms.
12 76 farmers reported having some costs due to pesticide poisoning.
13 Out of 320 farmers, only 5 decided not to participate in the experimental part and
they own 11 plots. The more detailed description of the experiment instructions and
imputation of risk preference parameters can be found in the Appendix.
would note that within each series, the safe option does not change, but
the expected payoff of the risky option increases as we move down the
rows.

Farmers were asked to choose either lottery A or lottery B for each
row. More specifically, they were asked at which row, from Row 1 to
Row 14, would they switch from lottery A to lottery B for each series.14

Farmers were told that one of the rows would be chosen at random.
There is a bag of 10 numbered balls and depending on whether they
have chosen lottery A or lottery B in each row, the numbered ball they
draw randomly will determine the payoff. They were presented with 35
questions separated into 3 series (see the Online Appendix for answer
sheets used in the game).15

Following TCN'smodel, we assume a utility function of the following
form:

U x; p; y; qð Þ ¼
�
ν yð Þ þ π pð Þ ν xð Þ−ν yð Þð Þ x > y > 0 or xbyb0
π pð Þν xð Þ þ π qð Þν yð Þ xb0by

where ν xð Þ ¼ x1−σ for x > 0
−λ −xð Þ1−σ for xb0

and π pð Þ ¼ exp − − lnpð Þα� ��
ð1Þ

where p and q are the probability of the eventwithmonetary outcome x
and y, respectively. v(x) is the value function and the functional form
would depend on whether x is below zero or not. λmeasures the sensi-
tivity to loss versus gain. Bigger λ would indicate one is more sensitive
to loss over gain. σ is the standard measure of risk aversion. The higher
the sigma, the higher the degree of risk aversion; π(p) is the probability
weighting function adapted from Prelec (1998). If αb1, π(p) has an
inverted S-shape—individuals overweight small probabilities and un-
derweight large probabilities.16 One major advantage of the TCNmeth-
od is that while TCN incorporates PT, it does not reject EU outright. If
α=1 and λ=1, then utility function reform would reduce to the stan-
dard expectedutility function TCN can fall back upon. Using the farmers'
three switching points from the three series and the utility function
form assumption, we can impute the farmers' risk preference parame-
ters. Themethod of imputation can be found in the Appendix.We reject
the null hypothesis that λ=1 and α=1 at the 1% level. The summary
statistics of individual risk preference measures are provided in
Table 1.17
tionality of the subjects and eliminates any inconsistent behavior of subjects.
15 Online Appendix can be found on Liu's homepage.
16 In the literature of probability weighting, Gonzalez andWu (1999) find that the in-
flection point of probability weighting functions occurs at about 30%. In other words, if
probability is less than 30%, it is considered a small probability event.
17 For more detailed distribution and analysis of the risk preference parameters used
in this paper, see Liu (forthcoming).



Table 3
Payoff matrix from the experiment.

Lottery A Lottery B

Series 1
1 30% winning 20 Yuan and 70%

winning 5 Yuan
10% winning 34 Yuan and 90%
winning 2.5 Yuan

2 30% winning 20 Yuan and 70%
winning 5 Yuan

10% winning 37.5 Yuan and 90%
winning 2.5 Yuan

3 30% winning 20 Yuan and 70%
winning 5 Yuan

10% winning 41.5 Yuan and 90%
winning 2.5 Yuan

4 30% winning 20 Yuan and 70%
winning 5 Yuan

10% winning 46.5 Yuan and 90%
winning 2.5 Yuan

5 30% winning 20 Yuan and 70%
winning 5 Yuan

10% winning 53 Yuan and 90%
winning 2.5 Yuan

6 30% winning 20 Yuan and 70%
winning 5 Yuan

10% winning 62.5 Yuan and 90%
winning 2.5 Yuan

7 30% winning 20 Yuan and 70%
winning 5 Yuan

10% winning 75 Yuan and 90%
winning 2.5 Yuan

8 30% winning 20 Yuan and 70%
winning 5 Yuan

10% winning 92.5 Yuan and 90%
winning 2.5 Yuan

9 30% winning 20 Yuan and 70%
winning 5 Yuan

10% winning 110 Yuan and 90%
winning 2.5 Yuan

10 30% winning 20 Yuan and 70%
winning 5 Yuan

10% winning 150 Yuan and 90%
winning 2.5 Yuan

11 30% winning 20 Yuan and 70%
winning 5 Yuan

10% winning 200 Yuan and 90%
winning 2.5 Yuan

12 30% winning 20 Yuan and 70%
winning 5 Yuan

10% winning 300 Yuan and 90%
winning 2.5 Yuan

13 30% winning 20 Yuan and 70%
winning 5 Yuan

10% winning 500 Yuan and 90%
winning 2.5 Yuan

14 30% winning 20 Yuan and 70%
winning 5 Yuan

10% winning 850 Yuan and 90%
winning 2.5 Yuan

Series 2
1 90% winning 20 Yuan and 10%

winning 15 Yuan
70% winning 27 Yuan and 30%
winning 2.5 Yuan

2 90% winning 20 Yuan and 10%
winning 15 Yuan

70% winning 28 Yuan and 30%
winning 2.5 Yuan

3 90% winning 20 Yuan and 10%
winning 15 Yuan

70% winning 29 Yuan and 30%
winning 2.5 Yuan

4 90% winning 20 Yuan and 10%
winning 15 Yuan

70% winning 30 Yuan and 30%
winning 2.5 Yuan

5 90% winning 20 Yuan and 10%
winning 15 Yuan

70% winning 31 Yuan and 30%
winning 2.5 Yuan

6 90% winning 20 Yuan and 10%
winning 15 Yuan

70% winning 32.5 Yuan and 30%
winning 2.5 Yuan

7 90% winning 20 Yuan and 10%
winning 15 Yuan

70% winning 34 Yuan and 30%
winning 2.5 Yuan

8 90% winning 20 Yuan and 10%
winning 15 Yuan

70% winning 36 Yuan and 30%
winning 2.5 Yuan

9 90% winning 20 Yuan and 10%
winning 15 Yuan

70% winning 38.5 Yuan and 30%
winning 2.5 Yuan

10 90% winning 20 Yuan and 10%
winning 15 Yuan

70% winning 41.5 Yuan and 30%
winning 2.5 Yuan

11 90% winning 20 Yuan and 10%
winning 15 Yuan

70% winning 45 Yuan and 30%
winning 2.5 Yuan

12 90% winning 20 Yuan and 10%
winning 15 Yuan

70% winning 50 Yuan and 30%
winning 2.5 Yuan

13 90% winning 20 Yuan and 10%
winning 15 Yuan

70% winning 55 Yuan and 30%
winning 2.5 Yuan

14 90% winning 20 Yuan and 10%
winning 15 Yuan

70% winning 65 Yuan and 30%
winning 2.5 Yuan

Series 3
1 50% winning 12.5 Yuan and 50%

losing 2 Yuan
50% winning 15 Yuan and 50% losing
10 Yuan

2 50% winning 2 Yuan and 50% losing
2 Yuan

50% winning 15 Yuan and 50% losing
10 Yuan

3 50% winning 0.5 Yuan and 50%
losing 2 Yuan

50% winning 15 Yuan and 50% losing
10 Yuan

4 50% winning 0.5 Yuan and 50%
losing 2 Yuan

50% winning 15 Yuan and 50% losing
8 Yuan

5 50% winning 0.5 Yuan and 50%
losing 4 Yuan

50% winning 15 Yuan and 50% losing
8 Yuan

6 50% winning 0.5 Yuan and 50%
losing 4 Yuan

50% winning 15 Yuan and 50% losing
7 Yuan

7 50% winning 0.5 Yuan and 50%
losing 4 Yuan

50% winning 15 Yuan and 50% losing
5.5 Yuan
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4. Decisions about pesticide use

4.1. Literature on pesticide use

There is an extensive literature in agricultural economics regard-
ing the optimal level of pesticide use. The most common approach
in estimating the optimal pesticide use (or any input) is to use the
Cobb–Douglas production function and damage control framework
to assess the input substitution and marginal pesticide productivity
(Lichtenberg and Zilberman, 1986).18 This approach usually takes
the form:

Y ¼ ao ∏
n

i¼1
xDi

� �βi

� �
� G xp

	 
γ
; ð2Þ

where Y is the yield; ao ∏
n

i¼1
xDi

� �βi

" #
is the Cobb–Douglas production

function, where xi
D, i=1,2, … n are production inputs such as labor,

fertilizer, etc.; βi is a vector of the coefficients; G(xp)γ is the damage
control function, where xp is a vector of damage control agents such
as pesticide, herbicide, a Bt cotton binary variable, etc. The key to
this function form is that pesticide, a damage control agent, does
not enter the production function.19

This approach has been pursued by Pemsl and Waibel (2005) and
Huang et al. (2002a) to study patterns of pesticide use among Chinese
farmers and to evaluate the effectiveness of each input on increasing
yields. For the rest of this section, we focus specifically on literature
that treats Chinese Bt cotton farmers' pesticide use.

The main limitation of the aforementioned structural approach is
that it does not account for endogenous pesticide use in the produc-
tion function. When pest infestation is serious, farmers would spray
more pesticide but at the same time, yield could be lower as well.
Huang et al. (2002a) use two-stage least square regressions to esti-
mate yields and pesticide use. In the first stage, they employ determi-
nants such as education and age to estimate pesticide use, while using
perceived yield loss, price of pesticides, and talks with extension
agents as instruments. In the second stage, they estimate Eq. (2)
using the predicted pesticide use. Their estimate of optimal pesticide
use for Bt cotton farmers in 1999 is 1.2 kg per hectare to 4 kg per
hectare, depending on the specification of the damage function,
while actual pesticide use at the time was 11.8 kg per hectare. The
main problem with Huang, Hu et al.'s method of estimation is that
the instruments may not satisfy the exclusion restriction. For exam-
ple, both perceived yield loss and communication with extension
agents are very likely to be correlated with education, which also af-
fects pesticide use. In addition, since the use of counterfeit Bt cotton
seeds has been rampant, farmers' self-reports of Bt cotton status
18 One might think the target input model by Jovanovic and Nyarko (1996) and Foster
and Rosenzweig (1995) may be an alternative to the Cobb–Douglas production func-
tion in estimating the optimal pesticide use. The key idea of the target input model is
that as time goes by, the agent develops more expertise and become more productive.
In our case, farmers could possibly be learning over time about the optimal pesticide
use. Without incorporating risk preferences, the target input model would probably
predict 1) as farmers gain more experience, their pesticide use would be converging
to the optimal pesticide level; 2) if we look at a cross section of evidence, we would
find that farmers who have longer experience with Bt cotton would be using less pes-
ticide. We cannot test 1) since we only have a cross-sectional survey. We do not have
the ability to trace one's pesticide use pattern over time. As for 2), Liu (forthcoming)
finds that the time to adoption, thus farmers' experience using Bt cotton, is also corre-
lated with one's risk preferences. If we find evidence that farmers who have longer ex-
perience with Bt cotton use less pesticide, it will be difficult to disentangle the effect of
experience from one's risk preferences.
19 This approach to calculating optimal pesticide use assumes that farmers are risk
neutral. However, in actuality, as we discovered from the lottery experiment, most
farmers are risk averse. Using a reduced-form approach, we are going to include
farmers' risk preferences. One could imagine instead of maximizing over the Y (yield),
farmers are maximizing their utility which is a function of the yield. We provide some
conceptual framework of the role of risk preferences in the next section.



21 This is not the first paper to incorporate prospect theory in health related decision
making. Bleichrodt and his co-authors have a series of papers exploring the interaction
between loss aversion/nonlinear probability weighting in medical decision making
(Bleichrodt and Pinto, 2002; Bleichrodt et al., 2001). Bleichrodt et al. (2001) elicit indi-
vidual preference over health outcomes and they find that the coefficient of loss aver-
sion is between 2.17 and 3.06, which is similar to our measures of loss aversion.
22 This assumption that risk preference across domain is correlated has been tested
by Dohmen et al. (2011). They find that a general risk preference question (i.e. willing-
ness to take risks on an 11-point scale) can predict risky behavior in various domains
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may not be accurate, thus undermining the imputed effectiveness of
Bt cotton.

Unlike Huang et al. (2002a), Pemsl and Waibel (2005) take a step
forward by refining what Bt cotton truly represents in the damage
control function. Pemsl and Waibel collected leaves from each plot
in order to test the leaves' toxin levels, instead of Huang et al.'s
(2002a) approach using a binary variable indicating Bt cotton in the
damage control function. Using the more accurate measure of Bt
toxin, Pemsl and Waibel (2005) also conclude that Chinese cotton
farmers use an excessive amount of pesticides. They find that the op-
timal pesticide input level was about 5 kg per hectare in 2004, but
that Chinese farmers applied, on average, 14 kg of pesticides per hect-
are. In sum, both Huang et al. (2002a) and Pemsl and Waibel (2005)
find that Chinese cotton farmers are using nearly three times more
pesticide than optimal.

Several hypotheses have been formulated to explain the use of
excessive pesticides (Huang et al., 2002b; Pemsl, 2006; Yang et
al., 2005). One hypothesis is related to the agricultural extension
agents who are hired by the government to educate farmers
about the pesticides and new farming technology. Since agricultur-
al extension agents' salaries are often tied to the profits of pesticide
sales, they are incentivized to advise farmers to use pesticides even
when it is unnecessary (Huang et al., 2002b). Pemsl (2006) pro-
poses that the uncertainty associated with the quality and effec-
tiveness of both pesticides and Bt cotton seeds leads to farmers
overusing pesticides. Yang et al. (2005) find that many farmers
often confuse the larvae of cotton bollworms with those of other
insects; it is possible that their vivid memories of the high boll-
worm infestation years and the crop losses sustained during those
bollworm outbreaks could lead farmers to overuse pesticides on
their Bt cotton crops. Or the worse scenario, which has not been
linked directly to the overuse of pesticide: Wang et al. (2006) and
Lu et al. (2010) find some evidence suggesting that a secondary
pest, mirids, may be on the rise especially in areas where there is
high use of Bt cotton.

The preceding studies on Chinese cotton farmers' pesticide use
patterns have only been able to offer some suggestive hypotheses
without being able to test them with an econometric model. One
important difference between these and the current study is that
none of these aforementioned studies have incorporated farmers'
risk preferences into the decision making process. When uncertain-
ty in production exists, farmers' utility-maximizing choices would
differ from profit-maximizing decisions if they are not risk neutral.
If farmers are risk averse, the decision of overusing pesticide may
not be suboptimal. Therefore, farmers' risk preferences should
play an important role in deciding the quantity of pesticides they
use.

4.2. Conceptual framework

In this section, we will set up a simple conceptual framework to
demonstrate how each of the risk preference parameters could affect
one's optimal pesticide use if both health and income are part of the
utility function. Suppose for an individual farmer i, the farmer's utility
function is an increasing function of the income (Yi)20 and health
stock (Hi), we have the additive utility as follows: Ui=U(Hi,Yi)=
UH+UY. We take a simplistic view that Hi is a consumption good
and is independent of the level of Yi. Subscripts (H, Y) denote whether
a variable is for health or monetary domain. The TCN experiment and
its utility functional form (Eq. (1)) are written for a monetary domain.
Here we assume that both UH, UY take the prospect theory functional
20 One can also assume that Y is yield, and incorporate price of cotton in the utility
function. Given that there is almost no variation in cotton price within villages, we just
use Y as income for the sake of simplicity.
form as illustrated in Eq. (1).21 We further assume that these risk
preference parameters (σ, α, λ) are the same (or highly correlated)
in both health and monetary domains.22 In other words, one's coeffi-
cient of loss aversion in the monetary domain, λY, is the same as his
coefficient of loss averse in the health domain, λH; we make similar
assumptions for nonlinear probability weighting and coefficient of
relative risk aversion: αH=αY and σH=σY.

In Eq. (1) and TCN experiment, the reference point for income is
assumed to be zero. In the case of Chinese farmers, each of the health
and income domains would have different reference points. As UH has
a reference point (H0) in the health domain, UY would have a refer-
ence point (Y0) in the income domain. Again, only when an outcome
is below the reference point, the loss aversion parameter would affect
one's utility.

Suppose there are only two possible outcomes for health (H ; H)

and for income (Y ; Y). H > H;Y > Y . We can rewrite utility as Ui ¼
U Hi; Yið Þ ¼ UH þ UY ¼ U H ;pH ;H ;pH

� �
þ U Y ; pY ;Y ;pY

� �
where

pH ; pH , pY , pY are the corresponding probabilities of H , H, Y ; Y

respectively, such that pH þ pH ¼ 1 and pY þ pY ¼ 1. pY would
depend only on xp and S where xp is the amount of pesticide use. S in-

dicates severity of pest infestation.23 dpy
dS b0; dpydxp > 0; d2py

d xpð Þ2 b0 and

d2py
dS2

b0. The more pesticide one uses, the probability of high income,

pY , increases. On the other hand, the more pesticide one uses, the

chance of being poisoned, pH , increases. Thus,
dpH
dxp b0 and

d pH
dxp > 0.

The optimal pesticide use, (xp⁎), would depend on the risk preference
parameters σ,λ and α, S, H , H and Y ; Y .

To illustrate how the risk aversion parameter σ affects optimal
pesticide use (xp⁎), suppose that the possible health outcomes
H ; HÞ	

and income Y ; YÞ	
are both above the reference points—

H0,Y0. H > H > H0; Y > Y > Y0. For a given infestation level, S, the
more risk averse person would spray more pesticide if he maximizes
utility in the monetary domain to increasepY .

24 However, the optimal
overspray would be offset if the (dis)utility in the health domain from
overspraying is taken into account. The overuse of pesticides caused
by pesticide poisoning can result in higher pH , probability of a bad
outcome, and thus a more risk averse person would spray less. Thus
the optimal pesticide use would depend on the relative marginal util-
ity of gain in income, dUY

dxp , and the marginal (dis)utility from loss in
health due to the overspray of pesticide dUH

dxp .
For the relationship between loss aversion and optimal pesticide

use, it would depend on whetherH , H,Y , Y are above H0, Y0. Suppose
both Y , Y are considered a gain, while health can be either a gain or a
loss, Y > Y > Y0 and H > H0 > H, then loss aversion in the mone-
tary domain would not affect the optimal amount of pesticide use
since Y and Y are in the gain domain, i.e. above the reference point
Y0. However, in the health domain, the loss aversion amplifies the dis-
utility of the bad health outcome H. Hence, one would spray less pes-
ticide to reduce the likelihood of the bad health outcome: pH .
including health and monetary domains.
23 S can be any event that can be resulting in lower yield production, such as the
probability of getting ineffective Bt seeds.
24 Mathematically, it does not matter whether the perception of pest infestation is
caused by the resistance of cotton bollworm or the rise of the mirids. We should find
that a more risk averse person sprays more, holding the realized pest attack constant.



Table 4
OLS regression of pesticide use (kilogram/hectare).

(1) (2) (3) (4)

σ 7.244*** 7.423*** 7.450***
(Value function curvature) (2.453) (2.443) (2.455)
λ −0.502*** −0.530*** −0.525***
(Loss aversion) (0.188) (0.189) (0.182)
α 7.048* 6.614* 5.989
(Probability weighting) (3.958) (3.912) (3.963)
Age −0.118 −0.105 −0.124 −0.116

(0.139) (0.132) (0.132) (0.135)
Education (years) −0.726** −0.650* −0.622* −0.542

(0.358) (0.346) (0.345) (0.333)
Plot size (ha) −9.441*** −7.497** −8.151** −8.858***

(3.591) (3.089) (3.162) (3.262)
Price of pesticide −0.377*** −0.389*** −0.388*** −0.371***

(0.061) (0.062) (0.062) (0.063)
Bta −19.51** −21.48** −21.77** −25.92***

(8.135) (8.785) (8.766) (9.516)
Experience with Bt (years) 0.99 1.084 1.147* 1.093

(0.649) (0.681) (0.682) (0.679)
Trainingb −3.27 −2.803

(2.086) (2.095)
Bollworm severityc 0.0805

(0.050)
Mirid severityd 0.0438

(0.035)
Observations 941 930 930 925
R-squared 0.327 0.362 0.367 0.384

Note: robust standard errors are listed in parentheses. * significant at the 10% level; **
significant at the 5% level; *** significant at the 1% level. All regressions include village
fixed effects. Standard errors are clustered at the individual level. The unit of
observation for the regression is the plot. In particular, we have 5 farmers (11 plots)
who did not participate in the experiment.

a Bt cotton equals 1 if Bt cotton was planted in the plot, 0 if non-Bt cotton was
planted in the plot.

b Training equals 1 if the farmer had ever attended a training, 0 if he/she never
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Alternatively, if the reference point is the expected income so that in-
come can be either a gain or a loss, i.e. Y > Y0 > Y , then the
underspray due to loss aversion in the health domain could be offset
by loss aversion in the monetary domain. Hence, the net effect will
again depend on the relative marginal utilities.

Finally, the probability weighting parameter α determines how
much one overweights small probabilities and underweights large
probabilities. The smaller the alpha is, the more one overweights
small probabilities and the further away subjective probability
departs from the objective linear probability. One might overweight
the small probability event, such as severe pesticide infestation,25

and thus overspray pesticide. In the health domain, depending on
whether one would consider the probability of being poisoned by
pesticide to be a large (small) probability, the farmer could under-
weight (overweight) it, and thus use pesticide more (less) liberally.
If the probability of being poisoned is a large probability, then higher
α would imply more pesticide use; otherwise, the two forces offset
and how pesticide use depends on α is ambiguous. In summary, the
coefficient on σ, λ, α depends on the reference points in the utility
curve. The optimal pesticide decision is a tradeoff between disutility
of health loss and utility gain from higher income (yield).

In Section 5.3, we find that an increase in risk aversion may lead to
an increase in pesticide use, but an increase in loss aversion lead to a
decrease in pesticide use. The following example illustrates such a
scenario. Let us assume that there is linear probability weighting
(α=1) in Eq. (1) and Y > Y > Y0 and H > H0 > H. We can then
rewrite

U ¼ pH �H1−σ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Utility from good health

þ pH � −λð Þ − Hð Þ1−σ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{disutility from poor health

þ py �Y 1−σ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
utility from good crop yield

þ py � Yð Þ1−σ
zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{utility from poor crop yield

:

As we have previously discussed, dpHdxp b0,
dpH
dxp > 0, dpydxp > 0 and

dpy
dxp b0.

The optimal amount of pesticide (xp⁎) is a function of (σ,λ). With this
setting, when λ increases, it would only increase the disutility from
pesticide poisoning, but does not affect any other aspects. Therefore,
(xp⁎) would decrease with an increasing λ.26

Suppose V(σ,λ)=U(xp⁎(σ,λ)), applying the envelope theorem, we

would have dV
dλ ¼ ∂U∨

∂xp� ⋅ ∂x
p�

∂λ and dV
dσ ¼ ∂U

∂xp� ⋅ ∂x
p�

∂σ . One may rewrite this as
∂xp�
∂σ ¼ dV

dσ =
∂U
∂xp� and

∂xp�
∂λ ¼ dV

dλ =
∂U
∂xp�.

dV
dσ

¼ dU
dσ

���xp ¼ xp� ¼ pH xp�
	 


⋅ −1ð Þ⋅H1−σ ⋅ ln H
	 
þ pH⋅ λð Þ − Hð Þ1−σ ln − Hð Þ

þpY xp�
	 


⋅ −1ð Þ⋅Y 1−σ ⋅ ln Y
	 
þ pY � −1ð Þ⋅ Yð Þ1−σ ⋅ ln Yð Þ:

From the derivation in the online Appendix, we find that ∂U
∂xp� > 0.

Thus if ∂xp�
∂σ > 0, dV

dσ > 0. For example, if e > Y > Y > 0 and

Hj j > e > H > 0, dV
dσ > 0, we would have our desired results—an

increase in risk aversion can lead to an increase in pesticide use,
while an increase in loss aversion can lead to a decrease in pesticide
use. In the next section, we set up the econometric framework to em-
pirically test the relationship between farmers' risk preferences and
their pesticide use.
25 By examining the average yield over time, we observe that extremely severe pest
infestation takes place on average once in 10 years (10%).
26 In the online Appendix available on Liu's website, we show the derivation of this
negative relationship.
5. Econometric framework and regression results for pesticide use

5.1. Basic framework

We first replicate Huang et al.'s (2002b) results without the risk
preference parameters, so we estimate the following equation by
ordinary least square (OLS):

yijv ¼ δo þ δ1Btijv þ δ2 Bt expð Þijv þ γX′
ijv þ μv þ εijv; ð3Þ

where i denotes individual, j denotes plot, and v denotes village; yijv is
the amount of pesticides (in kg per hectare) sprayed for individual i,
on plot j, in village v; Btijv equals one if Bt cotton is planted and zero
otherwise; (Btexp)ijv is the number of years that farmer i has planted
Bt cotton interacted with the use of Bt cotton; Xijv' is a vector of
individual or plot characteristics, such as plot size, age, and years of
education; and μv is a village fixed effect. The main coefficients of
interest are δ1 and δ2. δ1 represents the effectiveness of Bt cotton in
reducing pesticide use 10 years after Bt cotton's commercialization.
The significance of δ2 is more complicated. There are two opposing
factors that can affect this coefficient. First, if the cotton bollworm
builds up a resistance to Bt toxin, more pesticides would need to be
used over time and δ2 should be positive. In contrast, if farmers
become more aware of the benefits of using Bt cotton as they have
more experience with planting Bt cotton, δ2 should be negative.

Column 1 of Table 4 shows the results from the estimation of
Eq. (3). We find that more educated farmers use significantly less
attended a training.
c It is proxied by an answer to a yield loss perception question: What do you think

your potential yield loss will be if you do not control for bollworm? The answer can
range from 0 to 100. The higher value indicates the worse bollworm severity.

d It is proxied by an answer to a yield loss perception question: What do you think
your potential yield loss will be if you do not control for mirids? The answer can range
from 0 to 100. The higher value indicates the worse mirid severity.



Fig. 1. Cumulative distribution function of seed price.
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pesticides. For every additional year of education a farmer has under-
gone, he reduces pesticide use by 0.73 kg per hectare, which is
equivalent to 2.7% of total pesticide use (among Bt cotton farmers).
In other words, farmers who finish elementary school use 16% less
pesticides than farmers with no education. The coefficient on plot
size is negative and significant, which could be a sign of economies
of scale. In addition, farmers use less pesticide when the price of
pesticides is high. The main coefficient of interest (δ1) indicates that
the cultivation of Bt cotton reduces pesticide use dramatically. All else
equal, the average Bt cotton farmer reduces pesticide use by 19.5 kg
per hectare on his Bt cotton plot compared with his traditional cotton
plot. The coefficient on the interaction term (δ2) is positive, but it is
not statistically significant from zero, which may simply mean that
the two aforementioned factors cancel each other out. Overall, we con-
clude that even a decade after the commercialization of Bt cotton, cot-
ton farmers still use significantly less pesticides on their Bt cotton
plots than on their traditional cotton plots. In all regressions that follow,
the standard errors are corrected for heteroscedasticity at the individual
level.

Next, we include the elicited measure of risk preferences in the
rest of the estimation. We can rewrite Eq. (3) as:

yijv ¼ δo þ δ1Btijv þ δ2 Bt expð Þijv þ δ3σ i þ δ4λi þ δ5αi þ γX′
ijv þ μv

þ εijv; ð4Þ

where σ is the coefficient of risk aversion, λ is a measure of loss
aversion, and α is a measure of nonlinear probability weighting. A
higher σ or λ implies greater risk or loss aversion, respectively.
αb1(α>1) implies the overweighting (underweighting) of small
probability events. The results of estimating Eq. (4) are shown in
columns 2 and 3 of Table 4. The coefficient on σ of 7.244 indicates
that if a farmer is more risk averse than the average farmer by
one standard deviation, he will use 2.39 kg per hectare (9%) more
pesticides than the average farmer. There could be several reasons
why we find a positive coefficient on the risk aversion parameter.
One such possible reason is that farmers worry about severe
bollworm pest attack, which is exacerbated by the fact that lower
quality Bt cotton seeds are rampant in the seed market. Not knowing
whether the Bt cotton seed is effective nor how severe the bollworm
problemwill be, the more risk-averse farmers will likely spray greater
quantities of pesticides.
The coefficient on λ of −0.502 implies that if a farmer is one
standard deviation more loss averse than the average farmer, he
will use 1.96 kg per hectare (7%) less pesticide than the average
farmer. The negative sign on this coefficient would be consistent
with the results from the example in Section 4.2, where the outcomes
in monetary domains are above the reference point Y > Y > Y0 and
H > H0 > H, thus the coefficient on loss aversion parameter reflects
the disutility in the health domain. We will further investigate this
possibility in Section 5.3. As illustrated in Section 4.2, there is no
clear prediction for the coefficient on a nonlinear probability
weighting parameter. We find nonlinear probability weighting to be
positive and marginally statistically significant.

Negative and significant coefficients on education in all of the
above estimations suggest that less educated farmers did not benefit
as much from the introduction of Bt cotton. In fact, what this educa-
tion variable captures is the farmers' knowledge of how to properly
use Bt cotton and effective pest management. While it may be too
late to provide formal schooling to adult farmers, one policy interven-
tion to help educate farmers is training sessions. We find the coeffi-
cient on training to be large with a reduction of nearly one standard
deviation of pesticide use, and it is marginally insignificant at 11%.
The Chinese government has already provided such services, but the
utilization rate of these services is far below 100%; in our sample,
merely 35% of farmers had ever attended a Bt cotton training session.
These training sessions are usually provided by agricultural extension
services or seed companies in each village. There is at least one farmer
in each village who reported attending a training session in each
year, so the low participation rate is not due to a lack of availability
of training sessions at the village level.

The findings here suggest that education and agricultural training
could help farmers reduce their pesticide use. The coefficients on
training presented in this section could suffer from upward bias
due to an omitted variable. For example, it is possible that the more
motivated farmers are more likely to attend training sessions and
could be more knowledgeable about Bt cotton even in the absence
of receiving training sessions. Unfortunately, we cannot investigate
further due to the limitation of the dataset.

5.2. Pest severity

One covariate that is missing from the above estimation is pest
severity. Lu et al.'s (2010) paper published in Science concludes that
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in an area where the Bt cotton planting proportion is high, the
number of mirid bugs found in the area is high. Given that almost
all of the plots in our survey are of Bt cotton, it is safe to assume
that the proportion of Bt cotton planting in the surveyed area is
close to 100%. Moreover, the size of the mirid population has been
found to fluctuate with rainfall and temperature (Ting, 1963; Wang
et al., 2009; Wu et al., 2002). If we take Lu et al.'s finding seriously,
the level of mirid infestation for individual i in village v, Miv, is a
function of Bt cotton plant portion in the village, rainfall in the village,
temperature in the village, and the error term, εi. Therefore, once we
control for village fixed effect in our regression specification, we are
left with the error terms, εi. As long as εi is orthogonal to our measure
of risk preference, then the coefficients on risk preference, which is
the main focus of the paper, would not be biased even if we do not
control for εi. Alternatively, we also try to collect farmers' perception
of pest severity using the following questions:

What do you think your potential yield loss will be if you do not
spray any pesticide for controlling bollworm? ___ (0–100%)
What do you think your potential yield loss will be if you do not
spray any pesticide for controlling mirids?27 ___ (0–100%)

We can use the answers to these questions as proxies for pest
severity with higher values indicating a more severe pest problem.28

These measures of pest severity are extremely subjective. The results
including these measures are presented in column 4 of Table 4.
Our main coefficients of interest—risk preferences—remain robust.
Coefficients on pest severity are positive and insignificant. One other
resultworth noting is that themagnitude of the coefficient on education
is smaller, but it remains positive and significant at the 10% level, which
implies that education is correlated with farmers' perceptions of pest
severity.29,30 We also try alternative specifications including regression
with only mirids severity, with bollworms severity only, with the mean
perceived infestations of bollworms and mirids and regression with an
interaction term between risk preferences and severity. The coefficients
of risk preferences are quite constant. The results for these alternative
specifications are available as an Online Appendix. Given the subjectiv-
ities of these pest measures, column 3 of Table 4would be our preferred
specification throughout the paper.

5.3. Other hypothesis

As discussed in Section 2, two of the possible reasons why farmers
use more pesticide are: the wide variation in the quality of Bt cotton
seeds and the false information from agricultural extension agents.
We will explore these two hypotheses in this section.

First, Fig. 1 shows the distribution of the cost of Bt cotton seeds
from 2 to 200 Yuan per kg. Fig. 2 is a histogram of the distribution
of 930 Bt cotton plots according to the source of the seed, cross
referenced with the average seed price for each source.31 The
cheapest seeds are those produced through on-farm propagation,
also known as the saved seeds. We asked farmers if they knew
whether the saved seeds were of lower, the same, or better quality
27 Mirids are reported byWang et al. (2006) as being the most serious secondary pest
to Chinese Bt cotton farmers.
28 The same methodology is also used by Huang et al. (2002b). We try to correlate
each of the pest severity measures with the individual risk preference. We find risk
preference cannot predict pest severity, and the correlation between them is low.
29 In a separate regression not reported in the current paper, when we regress the
yield loss on levels of education, controlling for village fixed effects, the coefficient
on education is negative and significant at the 1% level. Thus, higher levels of education
are associated with lower perceptions of yield loss.
30 Across columns, the numbers of observations have changed due to missing data.
We also try to use one consistent sample set from column 4 with specifications from
columns 1 to 3, and we find little difference in the regressions results. This table is
available in the Online Appendix.
31 For the saved seeds and the seeds exchanged by neighbors, we asked farmers for
an estimate of the market value of the seeds.
than the first generation Bt cotton seeds. Thirty percent of farmers
reported that they believed saved seeds to be of the same quality,
7% reported that they did not know, and 63% correctly answered
that the saved seeds are of inferior quality. The misperception of the
quality of Bt cotton seeds may explain why a full 25% of seeds for Bt
cotton plots are attained through on-farm propagation.

To investigate whether the source or the price of Bt cotton seeds is
a determinant of pesticide use, we restricted the sample to only Bt
cotton plots. While pesticide use could be an indicator of Bt cotton
seed quality, it is not a good indicator for traditional cotton seed
quality. The quality of conventional cotton is determined by its yield
performance, which is not captured in our estimation.

The regressor of interest is the seed price, which is presented in
column 1 of Table 5. The coefficient on seed price is not statistically
different from zero. The finding here complements Pemsl's (2006)
finding that the more expensive Bt cotton seeds are not significantly
more pest resistant than the cheaper Bt cotton seeds. In column 2,
we include a series of dummy variables for the source of the seeds,
for which the default source is “others.” None of the source dummies
are statistically different from zero. In an alternative regression
specification for which the results are not presented in the current
paper, we include an interaction term between source indicators
and the price of the seeds, and once again, none of the coefficients
are statistically different from zero. This suggests that the quality of
Bt seeds may not be dictated by the price and the source.

We then examine farmers' reporting of source of information. In
the survey we ask “how do you determine how much pesticide you
should spray?” (rank top 3 in order). The tabulated result is presented
in Fig. 3. Only 5% of farmers indicate that they rely on information
from agricultural extension agents as their number 1 source of
information when deciding how much pesticide to spray. A dummy
variable indicating whether an individual lists information from an
agricultural extension agent as the number 1 source of information
in determining pesticide use is included in the regression and the
results are presented in Table 6. We find that farmers who follow
extension agents' advice reduce their pesticide use by 6.39 kg/ha. We
also create another dummy for indicating whether the agricultural
extension agent is in the top 3 sources of information, but the coefficient
on the dummy is no longer significant.We find no evidence that getting
information from the extension agent is correlated with higher
pesticide use.
5.4. Robustness check

Onemight worry that our results could be driven by a few outliers,
so we use natural log of pesticide use as a dependent variable and the
results are presented in column 1 of Table 7. In column 2, we report
regression results using an alternative measure of pesticide, total
pesticide expenditure per hectare. Other than Table 6, the unit of
observation in the regressions has been at the plot level. The
advantage of using plot level information is that we have detailed
information about the seed used on each plot. It is common that
within the same household, seeds used on various plots are from a
variety of sources. Therefore, in order to investigate the impact of
seed (such as sources of the seeds or the Bt characteristics of the
seeds), the regression would have to be at the plot level. However,
one might suspect, the plot level pesticide expenditure could suffer
from measurement error as it is more difficult for farmers to estimate
the pesticide expenditure by plot. As a robustness check, we examine
the relationship between risk preferences and pesticide use at the
household level. We keep only plots with Bt cotton. The dependent
variable is also pesticide use (kilogram per hectare). The results are
presented in column 3. Coefficients on risk preferences are slightly
smaller compared to Table 4, but they remain significant at the
10% level.



Fig. 2. Frequency and average price of Bt cotton by source.
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So far we have imposed a strong function form on the utility
function when we impute the risk preference parameters. As a
robustness check, we will relax the utility function form and simply
divide farmers into 18 groups depending on their three switching
points in the lottery game (see Fig. 4). For instance, group 1 includes
the farmers who switched from lottery A to lottery B before row 6 in
both series 1 and 2 and switched before row 4 in series 3 (thus group
Table 5
OLS regression of pesticide use (kilogram/hectare).

(1) (2)

σ 7.597*** 7.454***
(Value function curvature) (2.501) (2.520)
λ −0.579*** −0.611***
(Loss aversion) (0.189) (0.189)
α 5.400 4.967
(Probability weighting) (3.915) (3.874)
Age −0.113 −0.103

(0.137) (0.137)
Education (years) −0.357 −0.398

(0.357) (0.356)
Plot size (ha) −10.24*** −9.495***

(3.693) (3.629)
Price of pesticide −0.456*** −0.450***

(0.087) (0.086)
Training −4.676* −4.975*

(2.619) (2.704)
Price of seed 0.017

(0.028)
Source

Seed companies 3.973
(4.860)

Village office −0.279
(5.497)

Exchange w/ neighbors 0.323
(5.134)

Saved seeds 2.044
(4.750)

Research inst −4.963
(6.149)

Seed vendors −0.738
(4.280)

Agri. extension 2.582
(4.843)

Observations 920 920
R-squared 0.352 0.359

Note: All non-Bt cotton plots are excluded from the regressions. Robust standard errors
are listed in parentheses. * significant at 10%; ** significant at 5%; *** significant at 1%.
All regressions include village fixed effects. Standard errors are clustered at the individ-
ual level.
1 should contain the most risk-seeking and least loss-averse individ-
uals). Group 18 includes those farmers who switched from lottery A
to lottery B after row 11 in both series 1 and 2 and switched after
row 4 in series 3 (thus group 18 should be the most risk averse and
loss averse group). In a regression, instead of using the three risk
preference parameters as the specification in Table 4 column 4, we
include the group dummies.32 An F-test rejects the null hypothesis
that these group dummies jointly equal to zero at the 5% level. Even
without imposing the utility functional form, we know that the TCN
field experiment can predict pesticide use. We are inclined to believe
that the field experiment design captures individual heterogeneity
in risk preferences and the functional form helps to ease the
interpretation.
5.5. Loss aversion

Throughout the analysis, the coefficients on loss aversion are always
negative and significant. Following the discussion in Section 4.2, we
know that optimal pesticide decision making is a combination of
tradeoff between disutility of health loss and utility gain from higher
income (yield). The negative coefficient suggests that the disutility
from health loss dominates in the loss aversion domain.33

To further examine this claim,we divide farmers into 4 groups based
on their coefficient of loss aversion, group 1 being the least loss averse
(1st quartile) and group 4 being the most loss averse (fourth quartile).
Regression results including these dummies are reported in column 1 of
Table 8.34 The missing dummy is for those who are in the first quartile,
the least loss averse farmers (lambdab=0.83).While the dummies are
not statistically significant, the negative coefficients on group dummies
indicate that all other groups (more loss averse) would spray less
relative to the least loss averse group. This is consistent with our
hypothesis. With the data available, we further examine whether
farmers who have experienced severe pesticide poisoning would
behave differently from those who have not. Presumably, the farmers
32 Since coefficients on group dummies cannot be interpreted meaningfully, the esti-
mates are not reported for brevity.
33 There could be two interpretations why health loss dominates over monetary loss.
One is that the reference point for monetary outcome is set low enough (Y > Y > Y0),
therefore loss aversion never plays a role in the monetary domain. The second is that
disutility from the income loss is much smaller compared to disutility for health loss,
U Yð Þ > U Hð Þ.
34 In this table we exclude those individuals who were just pesticide poisoned in
2006. Our measure of pesticide use is also from 2006, so presumably those who were
just poisoned in 2006 did not have a chance to adjust their pesticide use in the 2006
season yet.
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Fig. 3. Breakdown of top 3 sources of information for amount of pesticide use.

Table 6
OLS regression of pesticide use (kilogram/hectare).

(1) (2)

σ 6.587*** 6.755***
(Value function curvature) (2.166) (2.226)
λ −0.440** −0.426*
(Loss aversion) (0.204) (0.209)
α 4.497 4.181
(Probability weighting) (5.346) (5.417)
Age −0.154 −0.157

(0.168) (0.167)
Education (years) −0.247 −0.266

(0.283) (0.286)
Total landholding (ha) −4.220 −4.230

(2.911) (2.888)
Price of pesticide −0.461*** −0.460***

(0.086) (0.093)
Training −4.167* −4.602**

(2.020) (1.991)
Extension agent 1a −6.390*

(3.626)
Extension agent 3b −1.451

(2.584)
Observations 311 311
R-squared 0.32 0.32

Note: robust standard errors are listed in parentheses. * significant at 10%; ** significant
at 5%; *** significant at 1%. Unit of observation is at the household level. All traditional
cotton plots are excluded when compiling total pesticide use and landholding. All
regressions include village fixed effects. Standard errors are clustered at the village
level.

a This variable equals to 1 if the farmer reported having extension agent as number 1
source of information when deciding how much pesticide to spray.

b This variable equals to 1 if the farmer reported having extension agent as top 3
source of information when deciding how much pesticide to spray.

Table 7
Robustness checks for pesticide use.

Dependent variable Ln(pesticide
use)

Pesticide expenditure
(Yuan/ha)

Pesticide use
(kg/ha)

(1) (2) (3)

σ 0.242** 211.7*** 6.793***
(Value function curvature) (0.098) (69.360) (2.241)
λ −0.0150* −14.34** −0.414*
(Loss aversion) (0.008) (5.686) (0.206)
α 0.142 118.100 4.274
(Probability weighting) (0.140) (112.400) (5.363)
Age −0.004 −3.235 −0.155

(0.004) (3.821) (0.168)
Education (years) −0.022 −22.22* −0.262

(0.013) (12.020) (0.288)
Plot size (Ha) −0.217* −193.4** −4.213

(0.123) (78.590) (2.866)
Price of pesticide −0.0169*** −0.458***

(0.002) (0.094)
Experience with Bt (years) 0.035 27.780

(0.022) (19.320)
Bt −0.659*** −616.1**

(0.216) (263.600)
Training −0.122 −87.540 −4.839**

(0.081) (64.880) (1.898)
Observations 930 930 311
R-squared 0.474 0.319 0.316

Note: robust standard errors are listed in parentheses. * significant at 10%; ** significant
at 5%; *** significant at 1%. Unit of observation is at the plot level for columns 1 and 2,
but it is at the household level for column 3. All traditional cotton plots are excluded
when compiling total pesticide use and landholding for column 3. In column 3, the
plot size variable is replaced by total landholding. All regressions include village fixed
effects. Standard errors are clustered at the village level.
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who have had firsthand experience with pesticide poisoning would be
more loss averse in the health domain and those with more severe
pesticide poisoning episodes (as proxied by total medical cost incurred
due to pesticide poisoning) would be more conscious about loss of
health, and thereby reduce pesticide use more. In column 2, we present
results with a set of loss aversion quartile dummies and the interaction
terms between cost of pesticide poisoning and the quartile dummies.
First, the negative coefficients on the interaction terms imply that
those who are more severely poisoned would spray less. Second, most
of the negative results are driven by those who are in the fourth
quartile, the most loss averse. We find that for those individuals who
are the most loss averse (in the fourth quartile), for every 100 Yuan of
pesticide poisoning cost, they would reduce their pesticide use by
1.826 kg/ha (6%), relative to those who are least loss averse. In summary,



Fig. 4. Divisions of groups. Note: group 1 consists of individuals who switch from A to B between row 1 to 5 in series 1 and series 2 and switch from A to B between row 1 to row 4 in
series 3.
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we provide some suggestive evidence that loss aversion could exist in the
health domain.

6. Conclusion

We investigate the determinants of pesticide use among Chinese Bt
cotton farmers. Controlling for village fixed effects, our main findings
Table 8
Loss aversion and pesticide use.

Dependent variable Ln(pesticide use) Pesticide expenditure (Yuan/ha)

(1) (2)

σ 5.876* 5.947*
(Value function curvature) (2.827) (2.861)
α 5.437 4.577
(Probability weighting) (5.390) (5.720)
λ (2nd quartile) −0.610 −0.102

0.83bλb2.02 (3.260) (3.130)
λ (3rd quartile) −1.955 −1.332

2.02bλb3.22 (2.764) (3.205)
λ (4th quartile) −2.247 −1.518

3.22bλ (2.531) (2.412)
λ (2nd quartile)∗med costa −1.575

(1.680)
λ (3rd quartile)∗med cost −1.581

(1.424)
λ (4th quartile)∗med cost −1.826***

(0.458)
Observations 303 303
R-squared 0.306 0.313

Note: robust standard errors are listed in parentheses. * significant at 10%; ** significant
at 5%; *** significant at 1%. Unit of observation is at the household level. We exclude
individuals (6 farmers) whose last pesticide poisoning experience occurred in 2006
given that they would not have the chance to adjust their pesticide use after the
most recent pesticide poisoning experience. All regressions control for village fixed
effects, age, education, landholding and training. The default group are those who are
in the first quartile (least loss averse). Standard errors are clustered at the village level.

a Med cost equals to all costs (both medical and imputed labor cost) incurred due to
last pesticide poisoning episode in 100 Yuan.
are that the more risk-averse farmers use greater quantities of
pesticides, while the more loss-averse farmers use lesser quantities of
pesticides. The findings of this study have important policy implications.
They suggest that farmersmay not benefit asmuch fromnew technology
as policy makers and scientists would hope. Simply achieving a Bt cotton
adoption rate of 100% does not guarantee that farmers will know how to
fully capitalize on this new technology. In order to ensure that farmers
reap all the benefits of modern science, formal education and continuing
education, such as training sessions provided by the government, are
essential. Given that more risk averse farmers adopt Bt cotton later and
continue to use excessive pesticide even after adopting Bt cotton, the
government could offer crop insurance, which helps mitigate the
potential agricultural production risk.

Several hypotheses have been put forth by other researchers to
explain the cause of overuse of pesticide in China, including problems
with counterfeit Bt seed, false information from extension agents and
the rising of secondary pests. In our analysis, once we control for
village fixed effects, we find no evidence that these hypotheses can
explain the difference in pesticide use by farmers within the same vil-
lages. Another interesting result from our paper is that we find sug-
gestive evidence that loss aversion could exist in the health domain.
While health has long been considered a part of the utility function
since Grossman's seminal work (1972), very few papers have extend-
ed the utility function beyond the expected utility functional form to
incorporate health. Given the data limitation, it is beyond the scope of
this paper to fully test whether loss aversion exists in the health
domain. It is a topic of interest for future research.

Appendix 11.1. Experiment instruction

Twenty farmers from a single village gather in the village office at
the end of the interview day. We also invite the village leaders to be
present in the room to witness the game so that the farmers will
trust us. The village leader first explains to the farmers that we are re-
searchers from the Center for Chinese Agricultural Policy (CCAP) a
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department in Chinese Academy of Science (CAS) to conduct research
on farmers who make use of genetically modified cotton. We read to
the farmers the oral consent form and explain to them that everyone
who agrees to participate will receive 10 Yuan to start, but they that
might have the chance to lose all 10 Yuan or they might have the
chance to win up to 850 Yuan. The farmers who do not wish to partic-
ipate are given the opportunity to leave the room at this point in time.

We distribute an instruction sheet containing a practice question
that we review with each farmer to verify that all participants under-
stand the meanings of lottery A and lottery B. We then prepare two
bags, each of a different color, that contain numbered balls. The red
bag has 10 balls numbered 1 through 10 representing the probabili-
ties mentioned in the survey questions. The green bag contains 35
balls, each representing one of the 35 rows in the survey. We explain
to the participants that after the completion of the answer sheet, they
will draw one ball out of the green bag first. The number on that ball
will determine which line out of the 35 that they have answered will
be played. They then draw another ball out of the red bag. Depending
on the lottery they have chosen for that particular line, their payoff
will be determined by the second numbered ball. We use the sample
answer in the instruction sheet to demonstrate how the payoff would
be determined. We repeat the demonstration five times, asking the
participants each time howmuch the payoff would be, in order to en-
sure that most of them understand how the game works. We instruct
the participants not to communicate with each other during the
game. A few of the participants who cannot read have special assis-
tants who read the instruction sheet and questions to them. A cover
sheet is attached to the answer sheet; therefore, participants need
not worry that others will see their answers. This whole process nor-
mally takes an hour to an hour and an half.

Appendix 2

Switching points from series 1 and series 2 are used to estimate
the curvature of the utility function and the nonlinear probability
weighting parameter (α) for each participant. Once we estimate the
curvature of utility function, we can use switching point from series
3 to estimate the utility curvature in the loss domain.

For any subject who switches at row N, we can conclude that he
prefers lottery A over lottery B at row N−1 and prefers lottery B
over lottery A at row N. Using a combination of switching points
from series 1 and series 2, we will have a set of 4 inequalities and
wewill be able to find the ranges of σ and α that satisfy these inequal-
ities. In the case of “never switch” or “switching at row 1,” we have
one inequality. We follow TCN's convention by arbitrarily determin-
ing the lower/upper bound of the parameters, which is also TCN's
approach. For example, when a subject switches from lottery A to
lottery B at row 7 for both series 1 and series 2, the following inequal-
ities should be satisfied:

51−σ þ exp − − ln 0:3Þα	 �
201−σ−51−σ

� �
> 2:51−σ þ exp − − ln 0:1ð Þα� �

62:51−σ−2:51−σ
� �h

51−σ þ exp − − ln 0:3Þα	 �
201−σ−51−σ

� �
b2:51−σ þ exp − − ln 0:1ð Þα� �

751−σ−2:51−σ
� �h

151−σ þ exp − − ln 0:9Þα	 �
201−σ−151−σ

� �
> 2:51−σ þ exp − − ln 0:7ð Þα� �

32:51−σ−2:51−σ
� �h

151−σ þ exp − − ln 0:9Þα	 �
201−σ−151−σ

� �
b2:51−σ þ exp − − ln 0:7ð Þα� �

341−σ−2:51−σ
� �

:
h

Parameters that satisfy the above inequalities are 0.26bσb0.35
and 0.66bαb0.74. For all the parameters, we use the midpoint of
each interval and take the first decimal place as the point estimate.
After obtaining an estimate of σ, we use switching point from series
3 to write out inequalities involving λ. We use the midpoint of each
interval as the point estimate. More details about the estimation
method can be found in Tanaka et al. (2010).
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