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Abstract
Understanding the extent to which agriculture can adapt to climate change and the determi-
nants of farmers’ adaptive capacity are of paramount importance from a policy perspective.
Based on household survey data from a large sample in rural China, the present article adopts
a panel approach to estimate the potential benefits of long-run adaptation and to identify the
determinants of farmers’ adaptive capacity. The empirical results suggest that, for various
model settings and climate change scenarios, long-run adaptations shouldmitigate one-third
to one-half of the damages of warming on crop profits by the end of this century. These find-
ings support the basic argument of the hedonic approach that omitting long-run adaptations
will dramatically overestimate the potential damage of climate change. The paper also finds
that household-level capital intensity and farmland size have significant effects on farmers’
adaptive capacities.
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1. Introduction
Estimating the potential impacts of climate change on agriculture is crucial for under-
standing food security issues and for assessing the potential costs of greenhouse gas
emissions (Lobell and Asner, 2003). However, any estimate of the impact of climate
change is potentially biased if adaptation measures by farmers are not included (Lobell
et al., 2008). Thus, investigating the extent to which effective adaptation measures are
likely to be implemented is central to the study of the potential impact of climate change
on agriculture. An even more interesting issue from a policy perspective is identifying
and understanding the determinants of farmers’ adaptive capacity, as that knowledge
can support the design of effective adaptation policies.

The adaptation of agriculture to climate change is usually defined in terms of pro-
duction behavior adjustments by agricultural agents in order to moderate any negative
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effects or to exploit beneficial opportunities from the changed climate. Many previous
studies have stressed the difference between long-term adaptations to climate change,
and short-term responses to weather fluctuations: in adapting to long-term climate
change, farmers can adjust land use and other ex ante production behaviors, but in
responding to random inter-annual weather variations, farmers can only make limited
ex post adjustments due to time constraints or the need for large fixed investments (Seo,
2013). Examining farmers’ responses to inter-annual weather fluctuations or extreme
weather events may shed important light on possible adaptations to changes in climate
variation (see for example Huang et al., 2015). However, in the present study, we focus
only on adaptations to changes in the long-term climate trend; thus, for simplicity, the
term ‘adaptation’ in this paper refers only to such long-term adaptation to the climate
trend.

Empirically, a major contribution to the field of adaptation study involved the hedo-
nic approach proposed by Mendelsohn et al. (1994), which implicitly included adapta-
tions in its climate change impact estimation. The hedonic approach identifies climate
change impacts through cross-sectional climatic differences. Since it is assumed that
agricultural agents will have completely adapted to the climate of their particular regions,
by examining how the local climate in different regions affects the value of farmland,
this approach includes a full range of adaptations. Nevertheless, this approach cannot
explicitly evaluate the benefits of adaptation (Hanemann, 2000).

On the other hand, numerous farm-level studies have explicitly estimated the benefits
of particular adaptationmeasures. For example, Kurukulasuriya andMendelsohn (2008)
examined the benefits of crop-switching as amethod of adaptation, Seo andMendelsohn
(2008) provided evidence that farmers benefit from switching among different kinds
of livestock when adapting to warming, and Falco and Veronesi (2013) identified the
adaptation benefits from adopting water and soil conservation behaviors. Even though
existing farm-level adaptation studies have dramatically improved our understanding
of adaptation, as argued by Mendelsohn et al. (1994), in reality, there are innumerable
potential adaptation measures that farmers could apply in response to climate change,
and it is impossible to capture the benefits of the full range of long-run adaptations by
examining only individual adaptation measures.

Therefore, an approach to identifying the benefits of long-run adaptations without
examining individual adaptation measures would be valuable. The value of long-run
adaptations refers to the total benefits from all potential adaptation measures that could
be taken by farmers given the current technological level and relative commodity prices.1
The present study attempts to identify the value of long-run adaptations as a whole using
a panel approach. In this approach, the value of long-run adaptations is approximated
by comparing the estimated damage from cross-sectional climate differences and the
identified damage from inter-annual weather fluctuations.

Two types of panel models were developed, based on the key fact that inter-annual
weather fluctuations are generally common across regions in the same year2: one
depending on cross-sectional climate differences and the other on inter-annual weather

1As with the hedonic approach and all other partial equilibrium studies, it is impossible to include the
potential value of adaptations from future technological advancements and relative price changes. Hence,
the potential value of future adaptations related to the development of new technologies and changes in
relative prices are not included.

2This is especially true within a not too large geographic region, such as a province of China. In the
following, we provide empirical evidence to support this point.
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Environment and Development Economics 141

fluctuations. Only the former model, that is, the model using cross-sectional climate
differences, includes the benefit of long-run adaptations. Thus, we hypothesized that
the differences between the predicted impacts from these two models should reflect the
value of adaptations that can be taken only in the long-run.3 For simplicity, we refer
to the benefits of adaptations that can be taken only in the long-run as ‘the value of
long-run adaptations’. By combining this panel framework with a panel of large-scale
household-level survey data from rural China, the present study explicitly approximates
the potential value of long-run adaptations for agricultural production in China.

Another at least equally important issue is identifying the determinants of farm-
ers’ adaptive capacity. Many studies are concerned with empirically assessing financial,
informational, and institutional constraints on adaptation capacity (see, e.g., Kelly and
Adger, 2000; O’Brien et al., 2004). Some other studies take an experimental or empiri-
cal approach to inferring the determinants of adaptive capacity under climate change by
examining farmers’ responses to extreme weather conditions or natural disasters (see,
e.g., Grothmann and Patt, 2005; Huang et al., 2015). These studies shed important light
on the determinants of adaptive capacity and generally imply that farmers with better
infrastructure, higher crop diversification, more financial and technical support, and
better information are better at adaptation.

Previous studies lack an explicit estimate of the overall value of long-run adaptations.
Therefore, they generally evaluate the determinants of a specific adaptation behavior but
not the determinants of overall adaptive capacity. Our study’s panel approach allows us
to explicitly identify the potential value of long-run adaptations as a whole, so it is possi-
ble to examine the factors influencing overall adaptive capacity. In our data set, complete
farm and household characteristics are included. By combining these farm and house-
hold characteristics with the value of long-run adaptations, we were able to examine the
influence of these characteristics on adaptation value and gain additional understanding
of the determinants of farmers’ adaptive capacity.

Three characteristics distinguish this paper from previous studies. First, this paper
investigates the benefits of long-run adaptations of agriculture on climate change in
China, while most previous studies examined the damage from climate change (see, e.g.,
Wang et al., 2009; Chen et al., 2016). Second, in this study, the value of a full range
of long-run adaptations can be explicitly estimated, whereas the hedonic studies only
implicitly include the potential benefits of a range of long-run adaptations, and other
studies only explicitly examine the benefits of one or a few specific adaptation mea-
sures. Third, this paper provides empirical evidence on the determinants of the value
of long-run adaptations in China.

The following sections describe the study’s data sources and summary statistics,
conceptual framework and econometric models, and empirical results.

2. Data sources and summary statistics
The data for agricultural production and household characteristics were collected from a
large-scale household-level survey conducted in rural China in late 2012 and early 2013.

3As detailed in section 3, the adaptation methods that can be taken in the short run, such as shifting
sowing time and usingmore pesticides, aremost likely still available when dealing with the long-run climate
change. Hence, the first model includes benefits from adaptation methods that can be taken only in the
long run as well as methods that can be taken also in the short run, while the second model only includes
the benefits from adaptation methods that can be taken in the short run. Therefore, their difference is the
benefits of adaptation methods that can be taken only in the long run.
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Figure 1. Sample provinces of the survey in China.

Funding was available for the field survey in eight of the 34 provinces and regions of
China (see figure 1). The surveywas dependent on funding from several separate projects
supporting research in specific provinces or regions, so it was conducted only in those
provinces supported by these projects. Specifically, the survey in the provinces of Hebei,
Henan, Anhui, Shandong, and Jiangsu was mainly supported by funding from the Min-
istry of Science and Technology in China, the survey in the provinces of Jiangxi and
Yunnan was mainly supported by funding from the Australian Centre for International
Agricultural Research, and the survey in Jilin province was mainly supported by the
National Natural Sciences Foundation in China.

Even though which provinces were included in the survey depended on funding
availability, the eight sample provinces approximately represent the various agricultural
systems in China. Specifically, the Jilin province represents themonoculture agricultural
system in cold areas of China; Hebei, Henan, Anhui, Shandong, and Jiangsu represent
the rotation agricultural system in China’s temperate climate zone; the Jiangxi province
represents rice production in southern China; and the Yunnan province represents agri-
cultural production in the plateau climate zone. In addition, these eight sample provinces
are important in Chinese agriculture. For example, they produced about 47 per cent of
the total agricultural output in China each year; the other 53 per cent is produced by the
remaining 26 provinces and regions in China.
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Environment and Development Economics 143

Thirty-one sample counties were selected from the eight sample provinces. We
selected three sample counties from each of seven sample provinces, but we selected
10 sample counties from Jiangxi because extra funding was available for this province.
Within each sample province we divided all the counties into three groups (10 groups
for Jiangxi) based on the condition of the agricultural production infrastructure and
randomly selected one county from each group.

We selected the townships and villages before interviewing the actual households.
Within each of the 31 selected counties, we divided all the townships into three groups
based on the condition of the agricultural production infrastructure and randomly
selected one township from each group. We used the same approach to select three
villages from each township. Finally, we randomly selected 10 households for face-to-
face interviews in each sampled village. We identified a total of 2,790 households in the
eight provinces. After dropping the households with missing data for agricultural out-
put, input, or household characteristics, the final sample used in the analysis comprised
2,733 households.

The farmlands in the survey are mainly used for crops and orchards.4 The crop pro-
duction and orchard data were collected separately. For land used for crop production,
only the two larger plots were investigated if the household managed more than two
plots. This sample selection rule helped to reduce measurement error because, in our
data set, each household managed 7.6 plots on average and some plots were quite small.
Collecting data from small plots might incur large measurement errors because, accord-
ing to our experience, it is harder for farmers to precisely recall unit land inputs and
outputs for a small plot. There is no major concern about the representativeness of the
sample plots selected because, on average, the larger two plots took up 86.3 per cent of
the cropland area managed by each farmer. For orchards, the data were collected for all
orchards managed because each household usually managed only one or two orchards.

Household-level agricultural profits per hectare were collected for two years from
2010 to 2012.5 According to the survey, farmers usually plant multiple crops in sequence
in a plot within a year. The main growing season is usually used for staple crops, such as
rice, wheat, andmaize, while other seasons are used forminor crops, such as oilseed rape,
beans, and vegetables. The profits per hectare were constructed as revenue minus cost.
The revenues were the market value of all the products harvested in a year, and the costs
were the total production expenditure in a year. The costs included only expenses for
seed, fertilizers, pesticides, labor, and machinery.6 Finally, the profits per hectare were
translated into US dollars (USD) using China’s rural Consumer Price Indices (CPI) and

4Forestry and animal husbandrywere excluded from this survey because, in our sample provinces,mainly
local governments, not households, manage the forests. In addition, the household-level animal husbandry
in the sample is mainly free ranging and usually does not take up farmland. Orchards comprise fruits,
vegetables, and nut-producing trees.

5This is because another purpose of this survey was to investigate the effects of natural disasters (drought
and flood) on agricultural production. For each county, the year with the highest loss and the year with the
lowest loss due to natural disasters were selected out of the three years from 2010 to 2012. Thus, the two sam-
ple years may differ between some counties, and consequently we can form only an unbalanced panel from
this data set. To avoid the potential bias introduced by this sample selection rule, we include the percentage
of profit loss due to natural disasters as a control variable in the following econometric regressions.

6Since the family members of each household provide most of the labor input, the labor costs are mea-
sured as the total labor inputs (in work days) for each hectare of farmland times the daily wage. The daily
wage is the average daily wage for agricultural labor in each village.
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Table 1. Definition of variables

Variables Definition

Dependent variable

Crop profits Profits from crop production only (2010 constant USD/ha)

Crop and orchard profits Average profits from cropland and orchards weighted by land area (2010
constant USD/ha)

Climate variables

Degree-day Yearly degree-day (degrees)

Degree-day2 Square of yearly degree-day

Harmful degree-day Yearly harmful degree-day (degrees)

Precipitation Yearly total precipitation (mm)

Precipitation2 Square of yearly total precipitation

Farm and household characteristics

Capital intensity Production capital per hectare (1000 USD/ha)

Land size Land area managed by a household (ha)

Labor intensity Labor input per hectare (days/ha)a

Education Education of head of household (years)

Age Age of head of household (years)

Other control variables

Market access Distance to the nearest market of production inputs (km)

Soil quality County-level land quality measured by loam in the soil (%)b

Road density County-level density of paved road and railway (km/km2)c

Agricultural price index National-level agricultural price indexd

aThe labor intensity is measured by the total working days per hectare per year. Since there are usually multiple growing
seasons within a year, the labor inputs are the sum across growing seasons within a year.
bLoam is a standard indicator of soil quality. Loam is considered ideal for agricultural uses because it retains nutrients
and water, while still allowing excess water to drain away. The data come from Resources and Environment Data Centre
of Chinese Academy of Sciences (http://www.resdc.cn/).
cThe road density is calculated by the authors from a shapefile of 1:100,000 scale road information map for the year 2008
in China. Road density is measured as the kilometers of paved road and railway within a county divided by the total area
of the county.
dThe agricultural price index measures the prices received by farmers for agricultural goods and services. The data is
derived from National Bureau of Statistics of China (http://www.stats.gov.cn).

the exchange rate between RMB and USD as of 2010. In the following econometric anal-
yses, we mainly used crop profits per hectare as the dependent variable. As a robustness
check, we also provide analyses using the weighted average of profits per hectare from
cropland and orchards as the dependent variable.

Detailed farm and household characteristics with the potential to affect agricultural
profits and adaptive capacity were also collected in the survey. As defined in table 1,
these characteristics include the capital intensity, labor intensity, and farmland size of
the household; education level and age of the head of household; and market access.
County-level agricultural land quality and road density were also included as control
variables. County-level land quality was measured as the percentage of loam in the soil,
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Table 2. Summary statistics of variables

Variables Mean Standard deviation Minimum value Maximum value

Crop profits (USD/ha) 2186 1465 −2048 22156

Crop and orchard profits (USD/ha) 2259 1638 −2048 34922

Degree-day (degrees/year) 3471 998 1941 5688

Harmful degree-day (degrees/year) 2.7 5.2 0 23.5

Precipitation (mm/year) 1184 706 302 2866

Capital intensity (1000 USD/ha) 59.1 77.3 1.0 898.4

Land size (ha) 0.46 0.91 0.007 21.3

Labor intensity (days/ha) 0.5 0.8 0.0 19.0

Education (years) 6.8 3.0 0.0 16.0

Age (years) 52.8 10.3 18.0 88.0

Market access (km) 2.2 3.1 0.0 25.0

Loam (%) 30.9 4.9 21.8 40.0

Road density (km/km2) 0.5 0.3 0.2 1.1

Note: The definitions of the variables are provided in Table 1.

while county-level road density was measured as the number of kilometers of paved
road and railway within a county divided by the total area of the county. The summary
statistics of the data are provided in table 2.

The county-level daily mean temperature and precipitation data were derived from
the China Meteorological Data Sharing Service System (http://cdc.nmic.cn). This data
set provides real data for each of the 677 meteorological stations throughout China and
offers themost detailed and reliable climate data set inChina. At least onemeteorological
station is sited in 22 of the 31 sample counties. For those counties with more than one
meteorological station, county-level climate data was derived from the weather station
that was the closest to the county centroid of each county. For the nine sample counties
in which meteorological stations were not available, we instead used climate data from
the nearest meteorological station.7

Daily mean temperature and precipitation were used to construct values for county-
level yearly degree-days (DD), yearly harmful degree-days (HDD), and yearly total
precipitation (TP).8 DD measures cumulative exposure to temperatures of between 8
and 32◦C during the year. For example, a day with a mean temperature below 8◦C

7The alternative meteorological stations used were within a distance of 20km from the nearest border of
the sample county.

8Some previous studies focusing on only one or several crops using growing season heat and precipi-
tation measures. In the present study, since the agricultural profits relate to all crops planted in the plots
during the whole year and not to only a specific crop, and since crops have quite different growing seasons,
we preferred to use the yearly measures instead of the growing season measures. According to the survey,
multiple planting in sequent seasons is a common practice in middle and low latitudes of China, and in
some provinces plants are usually growing in every season of the year. For example, farmers in Yunnan
province usually plant potatoes in the same plots after harvesting rice each September, while farmers in
Jiangxi province plant oilseed rape from January to April before the temperature is high enough for other
crops. Hence, it is impossible to find a discrete ‘growing season’ in the present study.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1355770X17000390
Downloaded from https://www.cambridge.org/core. Peking University, on 28 Mar 2018 at 10:18:09, subject to the Cambridge Core terms of

http://cdc.nmic.cn
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1355770X17000390
https://www.cambridge.org/core


146 Kaixing Huang et al.

Table 3. Predicted changes in yearly climatic variables

Climate change Standard Minimum Maximum
scenario Variable Mean deviation value value

RCP4.5 Mean temperature 2.7 0.3 2.4 3.3

Degree-day 684.0 127.2 500.2 941.0

Total precipitation (mm) 98.2 76.2 12.1 240.5

RCP8.5 Mean temperature 5.2 0.5 4.6 6.2

Degree-day 1400.7 211.4 1056.4 1668.0

Total precipitation (mm) 109.7 66.5 21.9 215.5

Note: The predicted changes in climatic variables are calculated as the differences between the 30-year historical average
(1976–2005) and the 30-year prediction average (2071–2100).

contributes zero DDs, between 8 and 32◦C contributes the difference between the mean
and 8◦C, and above 32◦C contributes 24 DDs. DD is the sum of daily measures across
the calendar year. HDD captures the possible damage of extreme heat that exceeds this
threshold. We follow previous studies such as Guiteras (2009) to calculate HDD by
assigning each day with mean temperature above 34◦C the difference between that day’s
mean temperature and 34◦C, and then sum up the daily measures across the calendar
year to get the yearly HDD. TP is the total precipitation in mm during the calendar year.
For the robustness test in the econometric analysis, we also calculated the growing season
degree-day and growing season total precipitation.We followed the literature in defining
growing season to be fromMarch to October.

Finally, to predict climate change impacts, we collected the latest climate change pro-
jections that were developed for the Fifth Assessment Report of the Intergovernmental
Panel on Climate Change (IPCC). The climate projections from 21 modeling cen-
ters and two Representative Concentration Pathway (RCP) scenarios, namely RCP4.5
and RCP8.5, which represent the medium and highest scenarios, respectively, were
downloaded from the NASA Earth Exchange Global Daily Downscaled Projections
(NEX-GDDP) data set (https://cds.nccs.nasa.gov/nex-gddp). Each model provides daily
minimum temperature, maximum temperature, and precipitation under each scenario
for the period from 2006 to 2100, with a spatial resolution of 0.25 degrees× 0.25 degrees
(about 25 km × 25 km). Each model also provides simulated historical daily data from
1950 to 2005 for the same spatial resolution.

The climate change predictions were calculated as the difference between the
1976–2005 average and the 2071–2100 average. Specifically, we first mapped the grid-
ded climate predictions into each sample province to formulate province-level climate
predictions for each year, then calculated the 30-year historical simulation average
(1976–2005) and the 30-year prediction average (2071–2100) for each province.9 Since
point estimates depending on a single climate projection can be misleading (Burke
et al., 2015),10 we used the average prediction of the CMIP5 models in the following
impact estimation. Table 3 reports the projected climate changes of scenarios RCP4.5

9The spatial resolution of climate predictions does not allow us to calculate the county-level predictions.
10There are over twenty recognized climate change prediction models available, and large predic-

tion discrepancies are observed across models. We do not have evidence that any particular model
is more reliable than the others (Solomon, 2007). For details of the modeling centers, see ‘CMIP5
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and RCP8.5. The projected yearlymean temperature rise is 2.7 and 5.2◦C for RCP4.5 and
RCP8.5, respectively. Despite the dramatic difference in the change of yearly degree-day
predicted by these two scenarios, their predicted precipitation changes are quite similar.

3. Conceptual framework and econometric approach
Two sources of meteorological variation are usually employed to identify the impact of
climate change: cross-sectional climate differences used in the hedonic approach, such
as in Mendelsohn et al. (1994), and inter-annual random weather fluctuations adopted
by panel studies, such as in Deschênes and Greenstone (2007).11 Econometric methods
based on these two sources of meteorological variation differ in their ability to incor-
porate long-run adaptations. Specifically, climate change impacts identified through
cross-sectional climate variations should include the benefit of long-run adaptations
because, as assumed in the hedonic approach, farmers should have adapted to the cli-
mate of their regions (Mendelsohn et al., 1994). On the other hand, impacts identified
through inter-annual weather fluctuations do not include the benefits of long-run adap-
tations since farmers will have made only limited ex post adjustments in response to
random weather outcomes (Seo, 2013).

Even though the hedonic approach provides a potentially ideal way to implicitly
incorporate long-run adaptations into climate change impact studies, this approach can-
not be used to estimate explicitly the value of adaptations (Hanemann, 2000). Therefore,
the merits of the hedonic approach depend crucially on the magnitude of the value of
long-run adaptation: if the value of long-run adaptions is negligible, using the method
depending on inter-annual weather fluctuations will not result in a significant bias due
to omitting adaptations. In addition, explicitly estimating the value of long-run adapta-
tions is necessary for identifying the determinants of overall adaptive capacity. Hence,
an econometric approach that can be used to estimate the value of long-run adaptations
is valuable.

Based on the key fact that inter-annual weather fluctuations are generally common
across regions in the same year, Huang (2015) combined the basic idea of the hedonic
approach with panel data and developed a panel framework that could be used to esti-
mate explicitly the value of long-run adaptations. The basic idea of this panel framework
is shown as equation (1):

wit = Ti + dt + εit (1)

in which wit is the weather outcome of county i in year t; Ti is the climate (i.e., long-
term average weather outcome) of county i, which is assumed to be constant over time
but differs across counties; dt measures the inter-annual weather fluctuations that are
common across counties in the same year but vary over time; and εit represents county-
specific weather shocks.12 In a panel model with time fixed effects, the inter-annual
weather fluctuations that are common across observations (dt) can be filtered out, and

Coupled Model Intercomparison Project’, Program for Climate Model Diagnosis and Intercomparison
(http://cmip-pcmdi.llnl.gov/cmip5/availability.html).

11‘Climate’ describes the long-term average of weather outcomes for a given region, while ‘weather’ refers
to a particular year’s realization of climate distribution (Dell et al., 2014).

12Here, we assume the climate of a county Ti is constant for not too long a time (such as three years).
However, relaxing this assumption does not affect the weather decomposition as shown in equation (1).
Because the climate trend over time is usually common across counties (as shown in table 4), it can be
captured in the second part dt .
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Table 4. The magnitudes of inter-county climate (Ti) variation, inter-annual weather fluctuations (dt),
and local weather shocks (εit)

Panel A. Percentage of counties with temperature variance below/above (◦C):

±0.1 ±0.2 ±0.3 ±0.4
(A1) Inter-county mean temperature variation 96.7 93.5 90.3 74.2

(A2) Inter-annual temperature fluctuations 83.3 70.9 55.8 36.8

(A3) County-specific temperature shocks 22.5 4.3 2.1 0.0

Panel B. Percentage of counties with precipitation variance below/above (mm):

±100 ±200 ±300 ±400
(B1) Inter-county total precipitation variation 96.7 93.5 83.9 64.5

(B2) Inter-annual precipitation fluctuations 61.2 35.7 25.6 18.2

(B3) County-specific precipitation shocks 18.3 5.4 4.3 2.1

Note: Temperature is measured by the yearly mean temperature (◦C), while precipitation is measured by the yearly total
precipitation (mm). The ‘inter-countymean temperature variation’ and the ‘inter-county total precipitation variation’ rep-
resent the climate (Ti) differences, which are calculated as the deviation of the county mean from the sample mean. The
‘inter-annual temperature fluctuations’ and the ‘inter-annual precipitation fluctuations’ represent the weather fluctua-
tions (dt), which are calculated as the deviation from the county mean. The ‘county-specific temperature shocks’ and the
‘county-specific precipitation shocks’ measure the variation in local shocks (εit), which are calculated as the remaining
variation after the county mean and the year mean are subtracted from each observation. All entries are calculated for
the sample counties and sample years (2010–2012). See the text for further details.

thus the remaining meteorological variation pertains only to cross-sectional climate dif-
ferences (Ti) and idiosyncratic local shocks (εit). Since the local shocks are quite small
(as shown in table 4), the impacts are mainly identified through cross-sectional climate
differences, and therefore the long-run adaptations are included. On the other hand,
the county fixed effect can be used to eliminate inter-county differences in climate Ti,
which is constant over time, with the remaining variation pertaining only to common
inter-annual weather fluctuations (dt) and county-specific weather shocks (εit). Since the
variation in county-specific weather shocks is very small, the impacts are mainly iden-
tified through the common inter-annual weather fluctuations and thus do not include
adaptation benefits.

Therefore, the difference of the impact identified from two panel models, one with
time fixed effects and the other with county fixed effects, can be interpreted as the ben-
efits of long-run adaptation. To show this, assume that A is the full set of adaptation
methods that can be taken in the long run, and B is the full set of adaptation methods
that can be taken in the short run. Considering that the adaptation methods that can be
taken in the short run, such as shifting sowing time and using more pesticides, are most
likely still available when dealing with the long-run climate change, we have B ⊂ A. We
define the set of adaptation methods that can be taken only in the long run as C, so
that C = A − B. The panel model with time fixed effects identifies the impact mainly
through the cross-sectional climate differences (Ti) and hence includes the benefits ofA.
The panel model with county fixed effects identifies the impact mainly though the year-
to-year weather fluctuations (dt) and hence only includes the benefits of B. Therefore,
their difference reflects the benefits of C, which are the full set of adaptation methods
that can be taken only in the long run. As defined before, we refer to the benefits of C as
the benefits of long-run adaptation.
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Table 4 shows the actual size of the variation pertaining to εit ,Ti, and dt . Row (A1)
shows that 74.2 per cent of the sample counties had deviations in their yearly mean
temperature (Ti) from the sample mean that were larger than 0.4◦C, while row (A3)
shows that no counties had county-specific temperature shocks (εit) higher than 0.4◦C.
The same result applied to precipitation, with 64.5 per cent of the counties having more
than 400mm of deviation from the yearly total precipitation (Ti) from the sample mean
and only 2.1 per cent of counties having local precipitation shocks (εit) of more than
400mm (see rows (B1) and (B3)). Similarly, comparing rows (A3) and (B3) with rows
(A2) and (B2), we find that the county-specific weather shocks are also negligible rela-
tive to the inter-annual weather fluctuations. These results support our argument that
climate change impacts can be identified mainly through inter-county mean climate dif-
ferences in a panel model with time fixed effects and through common inter-annual
weather fluctuations in a panel model with county fixed effects.

However, since these climatic variables were calculated only for a three-year panel, it
is likely that the small county-specific temperature and precipitation shocks, as shown
in table 4, are the result of too short a panel period. To test this possibility, we calcu-
lated the values for the same variables as shown in table 4 using 30 years of weather
data for the sample counties and found quite similar results. Since the magnitudes of
inter-annual weather fluctuations were quite similar across regions, it is reasonable to
find small county-specific weather shocks after removing the inter-county climate dif-
ferences and the common inter-annual weather fluctuations. Similar results have been
found in previous studies using US data (Fisher et al., 2012).

The panel model used to identify climate change impact through cross-sectional cli-
mate differences is shown in equation (2), in which yijt denotes the crop profits per
hectare of household i in county j and year t; Cit is a vector of county-level climate vari-
ables, including yearly DD, yearly HDD, yearly total precipitation, and their quadratic
terms; Lijt is a vector of the farm and household characteristics as shown in table 1,
including capital intensity, land size, labor intensity, head of household education and
age, disaster loss, and market access; Kjt is a vector of the soil quality, transportation
conditions, and agricultural price index as defined in the last three rows of table 1; α,β ,
and γ are coefficients; and ρpt represents the province-by-year dummy. The dummywas
used to filter out year-to-year weather and other fluctuations that were common across
counties within each province.13 Thus, the coefficients of the climate variables in this
model were identified mainly through the inter-county mean climate differences, and
the benefits of adaptations could then be included. Finally, in the estimation, the error
term μit is clustered at the province level in order to address the potential bias from
the spatial correlation of the error term (Deschênes and Greenstone, 2007; Fisher et al.,
2012).

yijt = C′
jtα + L′

ijtβ + K′
jtγ + ρpt + μijt (2)

The model used to identify climate change impacts through inter-annual weather fluc-
tuations is presented in equation (3). The settings for yijt ,Cjt , Lijt , andKjt are the same as
for equation (2). The only difference is in the use of fixed effects. Model (3) includes the
county fixed effects τj to eliminate inter-county climate differences and does not use any

13The province-by-year fixed effect equates to imposing an individual-year fixed effect for each province.
Since China covers a large geographic area, the province-by-year fixed effect is better than the individual-
year fixed effect in accounting for inter-annual common fluctuations.
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type of time fixed effects, as these tend to eliminatemost of the year-to-year weather fluc-
tuations.14 Thus, the climatic coefficients are mainly identified through the year-to-year
weather fluctuations and do not include the benefits of adaptations. Finally, the error
term υijt is clustered at the province level.

yijt = C′
jtα + L′

ijtβ + K′
jtγ + τj + υijt (3)

By combining the estimates of the climate variables from models (2) and (3) with the
climate change predictions, we were able to project the impacts with and without adap-
tations, respectively. The differences in the projected impacts between these two models
can be interpreted as the benefits of long-run adaptation.

The most significant advantage of this approach is evaluating the value of long-run
adaptations as a whole, thus freeing the analyst from the burden of estimating the value
of each of the innumerable adaptive responses by farmers. This advantage is derived
directly from the basic idea of the hedonic approach: obtaining information about adap-
tations to future climate change by examining the current production differences across
climate regions.15 Large cross-sectional climate differences are observed, and farmers
should have adapted to the long-run climate of their regions.

A large body of studies has shown that climate has tremendous effects on agricultural
production across regions, and most of the cross-sectional differences in agricultural
production practices resulting from climatic differences can be explained as the result of
farmers’ long-run adaptation to the climate of their regions. Specifically, the distribution
of crop types and crop varieties across regions are mainly the result of farmers’ adaptive
choices based on their long-run climate observations. Regional gradients of temperature
result in the distribution of different crops and varieties from north to south (Cramer
and Solomon, 1993; Ramankutty et al., 2002), while for regions with sufficiently warm
temperatures, cultivation is strongly determined by the distribution of precipitation.

Even though crop choice is critically dependent on climate, humans have adopted
various other adaptive behaviors to overcome natural limitations to some extent. In
response to the observed climate, farmers in different climate regions choose the optimal
farm-management practices for their regions. For example, the sowing time in the tem-
perate zones of northern China ismuch later than it is in the tropics of southern China so
that crops have sufficiently warm temperatures during germination (Chen et al., 2005);
moreover, busting is usually chosen in southeast China where precipitation is abundant
during the growing season, while conservation tillage measures are taken by farmers
in northwest China where precipitation is quite limited (Zhang et al., 2011). In mod-
ern agricultural production, additional adaptive measures are available that depend on
intensive investments, such as the adoption of greenhouse and ground water irrigation

14In equation (3) we are not seeking to control for the effect of price shocks induced by output fluctuations
because the price shock can be seen as farmers’ ‘natural insurance’ for weather fluctuations. Eliminating
price shocks would thus overestimate the impact of weather fluctuations (Fisher et al., 2012).

15Another way of forecasting adaptations to future climate change is by examining farmers’ responses
to historical climate change. Unfortunately, the historical climate changes were too small for the period
duringwhich agricultural production data is available. For example, the Inter-government Panel onClimate
Change report of 1995 indicated that mean surface air temperature increased by about 0.3∼0.6◦C in the
prior 100 years, while the best prediction of mean temperature increase by the end of this century is about
2.5◦C (see scenario RCP4.5 of table 3). Hence, the available historical time-series data may not offer much
information about farmers’ potential adaptations to future climate change.
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systems to address insufficiency in growing season temperature and precipitation (Jin
and Young, 2001; Thomas, 2008).

Even though climate differences and farmers’ adaptive behaviors can explain many
cross-sectional production differences, many other non-climatic factors also have sig-
nificant effects. For example, differences in land quality and transportation also have
significant effects on variations in agricultural profits. Nevertheless, cross-sectional cli-
mate differences can still be a useful instrumental variable for identifying the benefits
of adaptation to future climate change. As suggested by Dell et al. (2014), non-climatic
variables with the potential to influence agricultural profits and also correlate with cli-
matic variables are themselves most likely the result of climate but not the cause of it.
Omitting these variables will not necessarily result in biased estimates of the coefficients
of climatic variables. Moreover, in our econometric analyses, we did our best to control
for non-climatic determinants of agricultural profits, including capital intensity, land
size, labor intensity, head of household education and age, market access, land quality,
transportation, and price level.

4. Empirical results
The regression results are shown in table 5. Columns (1a) and (1b) present the regression
results from model (2) and model (3) respectively, using crop profits as the dependent
variable, while columns (2a) and (2b) represent the regression results frommodel (2) and
model (3) respectively, using the average profits of crops and orchards as the dependent
variable.

For all of the four regressions, the estimated coefficients of the yearly degree-day
are statistically significant and show the inverted U-shaped relationship that is usually
found in climate change impact studies and indicates agricultural profits increasing with
degree-day up to a turning point, after which they decline. The coefficients of yearly
harmful degree-day are all negative, reflecting the negative effect of extreme heat on
agricultural production. It is not surprising to find that the coefficient of harmful degree-
day is statistically insignificant in columns (1a) and (2a) because the province-by-year
fixed effects applied tend to account for the extreme heat, which is likely part of the
inter-annual weather fluctuations but not the climate normal in the sample areas.

The coefficients of precipitation are all statistically insignificant, presumably because
the control variables, especially the fixed effects, account for a significant share of
the effects of precipitation. Previous studies have generally found that precipitation is
not a good measure of water supply for crops grown, especially for irrigated agricul-
ture (Schlenker et al., 2005). In the data, the agricultural production of 78.0 per cent
of households depends on irrigation.16 Hence, the estimated effects of the predicted
changes in precipitation are unreliable. Therefore, in the following calculation of the
impacts of climate change and the benefits of adaptations, wemainly focus on the effects
of warming.

Most of the control variables in these four regressions have statistically significant
effects on profits per hectare. Specifically, profits per hectare increase with increas-
ing capital intensity until a turning point, after which the effect becomes negative, but

16Even though irrigation is an important factor that affects agricultural profits, it has not been included as
a control variable in the models because, at the same time, it is an important adaptation to climate change.
Including it will bias the climatic coefficients of the model that intend to capture the benefits of adaptation.
See Row (6) of table 6 for a robustness check in which irrigation has been included as a control variable.
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Table 5. Regression results of the effects of climatic variables and household characteristics on agricul-
tural profits

Crop profits Crop and orchard profits

Independent variables (1a) (1b) (2a) (2b)

Climate variables

Degree-day (100 degrees/year) 324.12∗∗ 1,029.52∗∗∗ 292.30∗∗∗ 861.74∗∗∗
(110.74) (252.82) (101.91) (292.62)

Degree-day2 −5.15∗∗ −13.61∗∗∗ −4.72∗∗ −11.23∗∗
(1.83) (3.86) (1.73) (4.46)

Harmful degree-day (degrees/year) −58.52 −530.36∗∗∗ −121.88 −580.82∗∗∗
(264.63) (184.81) (307.37) (213.90)

Precipitation (100 mm/year) −0.15 −0.32 −0.10 −0.54
(0.69) (0.30) (0.67) (0.35)

Precipitation2 1.86 2.51∗ 1.84 3.35∗∗
(2.94) (1.34) (2.83) (1.55)

Farm and household characteristics

Capital intensity (1000 USD/ha) 6.41 21.23∗∗ 11.56 24.81∗∗
(10.60) (9.44) (11.98) (10.93)

Capital intensity2 −0.00 −0.00∗∗ −0.00 −0.00∗
(0.00) (0.00) (0.00) (0.00)

Land size (ha) 407.30∗∗ 340.35∗∗∗ 479.34∗∗ 443.97∗∗∗
(143.05) (51.62) (168.90) (59.75)

Land size2 −23.86∗ −20.35∗∗∗ −26.76∗ −25.43∗∗∗
(11.90) (4.07) (13.75) (4.71)

Labor intensity (days/ha) 0.79 0.57 0.21 0.03
(1.03) (0.64) (1.02) (0.74)

Labor intensity2 0.00 0.00 0.00 0.00
(0.00) (0.00) (0.00) (0.00)

Education (year) 21.00∗∗ 19.32∗∗∗ 27.24∗∗∗ 24.91∗∗∗
(6.93) (6.37) (7.39) (7.37)

Age (year) 2.29 −0.21 0.52 −2.71
(1.94) (1.98) (2.07) (2.29)

Other controls

Market access −55.41∗∗∗ −32.13∗∗∗ −53.05∗∗∗ −31.22∗∗∗
(11.93) (7.15) (10.00) (8.27)

Soil quality control 38.07 – 43.64 –
(27.63) (28.09)

Road density control 281.54 – 425.98 –
(350.49) (373.57)

Agricultural price index – −216.7 – −306.3∗
(137.1) (158.7)

Continued.
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Table 5. Continued.

Crop profits Crop and orchard profits

Independent variables (1a) (1b) (2a) (2b)

Province-by-year fixed effects Yes No Yes No

County fixed effects No Yes No Yes

Observations 5,466 5,466 5,466 5,466

R-squared 0.133 0.182 0.104 0.147

Note: The definitions of the variables are given in table 1. Stand errors clustered at the province-level are reported in
parentheses. Coefficients of soil quality control and road density control are omitted in columns (1b) and (2b) because
these county-level variables are mainly time invariant and have been accounted for by the county fixed effects.
Significance levels are ∗∗∗P < 0.01, ∗∗P < 0.05, ∗P < 0.1.

the negative effect is negligible (the coefficient of the square term is approximate to
zero). The effect of land size on profits also shows an inverted U-shaped relationship.
In addition, profits per hectare rise significantly with the education level of the head of
household and the volume of irrigation water used, and decline significantly with losses
due to natural disasters and the distance to market. All these significant effects are quite
intuitive.

However, quantitatively, there is a difference between the estimated coefficients of
models with and without long-run adaptations. For example, using the regression coef-
ficients we calculate that the marginal effect at 4000 degree-day, which is approximately
the average degree-day under scenario RCP4.5, is −0.87 for the model without adap-
tation and −0.59 for the model with adaptation. This suggests that with adaptation,
the damage of warming on agricultural profits could be smaller on average. Similarly,
according to the coefficient of harmful degree-day, the negative effect of extreme heat is
weaker with adaptation than without, which implies that adaptation can help reduce the
damage of extreme heat on agricultural production.

We combined the estimated coefficients of degree-day, degree-day square, and harm-
ful degree-day of models (2) and (3) with the climate change scenarios to predict the
impacts of warming with and without long-run adaptations, respectively. Row (1) of
table 6 reports the predicted yearly impact of warming on crop profits per hectare by
the end of this century for two scenarios. The model that did not include long-run
adaptations predicted much more damage (column (2)) than the model that included
long-run adaptations (column (1)) for both scenarios. The t-test as reported in column
(3) found statistically significant differences between the estimated impacts with and
without long-run adaptations.

Specifically, under the most likely climate change scenario RCP4.5, the predicted
changes in crop profits per hectare will be−193.8 USD and−412.1 USD with and with-
out long-run adaptations, respectively. These damages correspond to 8.9 per cent and
18.9 per cent of the current mean annual profits per hectare in the sample area (see
table 2). Column (4) reports the percentage of damages that will be offset by long-run
adaptations. Long-run adaptations will help to mitigate 52.9 per cent and 51.4 per cent
of the damages predicted by themodel that did not include long-run adaptations for sce-
narios RCP4.5 and RCP8.5, respectively. In addition, relatively large standard deviations
from the estimated damages were found, implying that there are significant regional
differences in the impacts of warming.
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Table 6. Impacts of warming on crop profits by the end of this century and the benefits of long-run
adaptation (2010 constant USD per hectare per year)

Impacts
(3) T-value of the (4) Percentage of

(1) With (2) No t-test between damages offset by
Model setting Scenario adaptation adaptation columns (1) and (2) adaptation (%)

(1) Impacts of
warming on crop
profits

RCP4.5 −193.8 −412.1 28.1∗∗∗ 52.9
(114.9) (388.7)

RCP8.5 −1038.7 −2138.8 47.9∗∗∗ 51.4
(274.9) (1167.8)

Robustness tests

(2) Including the
effects of changes
in precipitation

RCP4.5 −187.3 −323.7 15.2∗∗∗ 42.1
(131.8) (449.5)

RCP8.5 −988.2 −2031.3 51.6∗∗∗ 51.3
(352.5) (995.1)

(3) Excluding
household
characteristics
and soil controls
in the regressions

RCP4.5 −244.8 −409.7 20.9∗∗∗ 40.2
(131.8) (389.5)

RCP8.5 −1307.3 −2125.9 34.8∗∗∗ 38.5
(386.7) (1165.8)

(4) Using the profits
from both crops
and orchards as
the dependent
variable

RCP4.5 −179.1 −342.0 21.0∗∗∗ 47.6

(111.5) (388.0)

RCP8.5 −992.8 −1911.1 48.2∗∗∗ 48.0
(223.9) (969.8)

(5) Using growing
season climatic
variables

RCP4.5 −330.7 −610.9 28.9∗∗∗ 45.8
(198.9) (464.6)

RCP8.5 −1687.3 −2678.7 27.9∗∗∗ 37.0
(532.8) (1778.0)

(6) Control for
irrigation

RCP4.5 −254.6 −621.2 38.8∗∗∗ 59.0
(142.8) (471.8)

RCP8.5 −1281.0 −2724.4 40.6∗∗∗ 52.9
(431.8) (1806.4)

Note: Standard deviations are reported in parentheses.
Significance levels are ∗∗∗P < 0.01. See the text for further details.

The estimates of the impact of warming and the value of long-run adaptations are
generally consistent with the literature. Previous hedonic studies, which include long-
run adaptations, usually predict relatively small impacts of warming as in this paper. For
example, under comparable climate change scenarios,17 Wang et al. (2009) predict the

17By the comparable climate change scenario we mean scenarios predict about 2.7◦C increase in mean
temperature as predicted by the scenario RCP4.5 used in this paper. These scenarios include the HadCM3-
A2 emissions scenario by 2050s (2.6◦C), the HadCM3-B2 emissions scenario by 2050s (2.4◦C), and the
conventional CO2 doubling scenario (5F or 2.8◦C). In addition, the impact of a 2.7◦C increase in mean
temperature can also be approximately extrapolated from studies that report the temperature elasticity of
agricultural output.
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yearly loss of net revenue for rainfed farms in China would be 256.5 USD per hectare (or
11.7 per cent), Wang et al. (2014) find the net crop revenue will decline by 12.9 percent
in North China, and Zhou and Turvey (2014) predict the change of the output of rice,
wheat, andmaize in China ranges from+8.0 per cent to−10.6 per cent depending on the
crop types and varieties. On the other hand, studies depending on simulation models,
which generally exclude long-run adaptations, predict larger impacts of warming. For
example, under comparable climate change scenarios, Xiong et al. (2009) predict a 18
per cent decrease in total grain output in China, Matthews et al. (1997) predict the rice
yield in the major rice-growing regions of Asia will drop by 21 per cent, and Tao and
Zhang (2011) find decreases in the yields of irrigated maize range from 4.3 per cent to
32.1 per cent depending on the possibility of growing season shifting. Although previous
studies donot predict the value of long-run adaptations inChina, the differences between
the impacts estimated from the hedonic studies and the simulation studies suggest that
long-run adaptations can help to offset a significant share of the damage of warming.18

Rows (2) to (5) of table 6 provide robustness tests. The main analysis as shown in row
(1) only includes the effects of warming. In row (2), the effects of changes in precipitation
are also included in the estimation. We find that including precipitation in the estima-
tion does not significantly change the estimated impacts and adaptations. Both models
estimated slightly smaller damages for each scenario, and adaptations are still expected
to offset about half of the damages.

A potential concern of panel model (2), which depends on inter-county climate dif-
ferences, is omitted-variable bias. Even though the inter-annual common fluctuations
and the inter-province time-invariant differences are well controlled by the province-
by-year fixed effects, we did not control for within-province inter-county differences
apart from the controls listed in table 1. To test for potential omitted-variable bias, we
dropped all household-level controls and the soil-quality control from the regression. As
shown in row (3), the estimated benefits of long-run adaptation drop from 52.9 per cent
to 40.2 per cent for scenario RCP4.5 and from 51.4 per cent to 38.5 per cent for scenario
RCP8.5. The results are similar if we only exclude control subgroups. Since omitting all
these crucial determinants of crop profits only reduces the adaptation benefits by about
12 per cent, the remaining omitted variables might not cause a large bias.

The main analysis only includes profits from annual crops. Because the responses
of perennial plants to climate change might be different from those of annual crops,
including the profits from orchards for which production ismainly dependent on peren-
nial plants, the analysis might lead to a different adaption estimate. Row (4) of table 6
shows this possibility. The impacts are estimated from regressions that used theweighted
average of profits from crops and orchards as the dependent variable. For the model
with long-run adaptations, the estimated impacts are quite similar to the impacts on
crop profits. However, the model without long-run adaptations predicted significantly
smaller damage than that reported in row (1), presumably because perennial orchards
are more resistant than annual crops to inter-annual weather fluctuations. As reported
in the last column, long-run adaptations will still help to reduce a significant share
of the damages (i.e., 47.6 per cent under scenario RCP4.5 and 48.0 per cent under
scenario RCP8.5).

18There are two formal predictions of the adaptation value for theUS agriculture that generate comparable
results with this paper. Huang (2015) predicts long-run adaptations will help to offset two-thirds of the
potential damage of climate change on US agriculture, and Burke and Emerick (2016) find that, although
with large uncertainty, long-run adaptations appear to have mitigated less than half of the large negative
short-run impacts of extreme heat on agricultural productivity.
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Since adjusting the growing season may be an important way of adapting to climate
change, in the main analysis, we use yearly climatic variables instead of growing season
climatic variables to allow for the adjustment of growing seasons in the long run. Intu-
itively, using growing season climatic variables in the estimation will underestimate the
benefits of adaptation. In row (5), we provide the estimates using growing season cli-
matic variables with a fixed growing season from March to October. As expected, the
estimated benefits of adaptation drop to 45.8 per cent for scenario RCP4.5 and to 37.0
per cent for RCP8.5. The main conclusion remains that omitting long-run adaptations
will dramatically overestimate the damages.

Irrigation has not been included as a control variable in the main analysis because
it is an important adaptation to climate change. In places with higher temperature and
lower precipitation, it is possible for farmers to use more irrigation water to reduce the
negative effects of these unfavorable climate conditions. Therefore, if we control for irri-
gation in the model that depends on cross-section climate differences, the adaptation of
irrigationwill not be captured in the coefficients of climatic variables. On the other hand,
since irrigation, which is an important determinant of agriculture profits, is not always
available, excluding irrigation from the model may result in omitted variable bias. As
a robustness check, row (6) of table 6 presents the estimation results from models that
control for irrigation. We find that, comparing with row (1), including irrigation does
not significantly change the estimated value of adaptation.

It is also interesting to check if the estimation results are sensitive to the study sam-
ple. To do so, we drop data from one province each time and re-do the estimation to
generate 8 group of estimates. As presented in column (1) of table 7, the estimated
damage from the model using cross-section climate variations is quite robust to this
check. Specifically, the estimated loss of profit ranges from 197.4 to 199.8 under the
scenario RCP4.5 and from 963.0 to 1062.2 under RCP8.5. This result suggests that omit-
ted inter-province differences do not significantly affect the conclusion of this paper.
In addition, as presented in the last column of table 7, although with noticeable vari-
ations, long-run adaptation will still help to offset at least one third of the damage of
warming.

Finally, we investigated the effects of farm and household characteristics on the ben-
efits of adaptation. We first calculated the impacts of warming predicted by RCP4.5 on
crop profits for each household using the estimates from column (1a) and (1b) of table 5,
respectively. Second, we calculated the household-level adaptation value as the differ-
ence in the impact estimated from these two models. Third, we performed a regression
analysis of the household-level values of adaptation against the farmandhousehold char-
acteristics listed in table 1 and controlled for the mean temperature differences among
counties. The significant regression coefficients are reported in equation (4):19

Adaptation_value = 20.7∗∗∗ × Capital_intensity−114∗∗∗ × Land_scale

+ 10.5∗∗∗ × Land_scale2−20.4∗∗∗ × Age

−5.8∗∗∗ × Degree-day + 0.001∗∗∗ × Degree-day2
(4)

We found that the cross-sectional adaptation value first decreased and then increased
with the degree-day. In other words, very cold and very hot areas have higher adaptation

19We also tried the regressions using adaptation values calculated from other warming scenarios and
found almost no differences in the significance levels and effect directions of each variable.
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Table 7. Testing the potential omitted variables bias by excluding samples for each province and
reestimating the value of adaptation (2010 constant USD per hectare per year)

Impacts
(3) T-value of the (4) Percentage of

(1) With (2) No t-test between damages offset by
Model setting Scenario adaptation adaptation columns (1) and (2) adaptation (%)

(1) Excluding
sample from
Anhui

RCP4.5 −199.0 −336.5 15.9∗∗∗ 40.8

(114.1) (386.1)

RCP8.5 −1062.2 −1802.1 35.4∗∗∗ 41.0
(285.0) (932.3)

(2) Excluding
sample from
Shandong

RCP4.5 −197.5 −289.7 9.6∗∗∗ 31.8

(113.7) (430.5)

RCP8.5 −1100.1 −1699.1 32.5∗∗∗ 35.2
(254.3) (822.2)

(3) Excluding
sample from
Hebei

RCP4.5 −198.2 −493.3 32.4∗∗∗ 59.8

(113.0) (409.7)

RCP8.5 −963.0 −2187.9 37.9∗∗∗ 55.9
(331.0) (1471.7)

(4) Excluding
sample from
Henan

RCP4.5 −199.8 −562.4 39.4∗∗∗ 64.4

(113.2) (414.5)

RCP8.5 −970.7 −2341.1 38.8∗∗∗ 58.5
(329.8) (1615.9)

(5) Excluding
sample from
Jiangsu

RCP4.5 −199.4 −403.9 23.5∗∗∗ 50.6

(113.9) (389.1)

RCP8.5 −1013.3 −1943.0 36.3∗∗∗ 47.8
(308.7) (1156.5)

(6) Excluding
sample from
Jiangxi

RCP4.5 −197.7 −439.7 30.5∗∗∗ 55.0

(112.6) (352.2)

RCP8.5 −979.8 −1862.8 30.9∗∗∗ 47.4
(323.1) (1296.2)

(7) Excluding
sample from
Yunnan

RCP4.5 −200.1 −459.3 32.3∗∗∗ 56.4

(112.7) (357.1)

RCP8.5 −969.1 −1889.6 31.2∗∗∗ 48.7
(329.8) (1334.7)

(8) Excluding
sample from Jilin

RCP4.5 −197.4 −490.9 35.2∗∗∗ 59.7
(114.3) (372.5)

RCP8.5 −963.0 −2029.4 33.8∗∗∗ 52.5
(337.5) (1434.8)

Note: Standard deviations are reported in parentheses.
Significance levels are ∗∗∗P < 0.01. See the text for further details.
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values than temperate areas. This result is intuitive, because farmers in cold areas have
more potential to adopt adaptation measures to exploit the beneficial opportunities of
warming, while farmers in hot areas are more likely to take adaptation measures to
moderate the negative effects of warming.

More importantly, both capital intensity and farmland size have statistically signifi-
cant effects on the adaptation value. The coefficient of capital intensity suggests that 10
per cent increases in capital intensity from its current mean will raise the yearly benefits
of adaptation by 124USDper hectare. Hence, a government policy targeted at enhancing
farmers’ adaptive capacity can work by encouraging investment in the physical capital
of agricultural production. On the other hand, the value of adaptation decreases with
farmland size at first and then increases after the turning point, which is 5.4 hectares per
household. If we increase the farmland managed by the average household by 1 hectare
from its currentmean, the yearly benefits of adaptationwill drop by 104USDper hectare.
However, once the farmland size exceeds 5.4 hectares per household, further increases in
farmland size will enhance adaptation benefits. A possible explanation is that, for small
household farms in China, increasing farmland size means less labor can be input per
hectare of land in response to warming. But once the land size is large enough, modern
agricultural production methods such as mechanized agriculture production are avail-
able to reduce labor force constraints. Finally, an increase in the average farmer’s age
by one year will reduce the benefits of adaptation by 20.4 USD per hectare. This could
reflect the fact that old farmers have less adaptation ability than young farmers.

5. Concluding remarks
This paper provides empirical support for the basic argument of the hedonic approach
that omitting long-run adaptations will dramatically overestimate the damage of cli-
mate change. Depending on large-scale household-level survey data from rural China,
the empirical results show that long-run adaptations are able to offset one third to one
half of the damages of warming using various model settings and climate change scenar-
ios. Hence, omitting long-run adaptations will dramatically overestimate the damages of
warming. This study also finds that capital intensities and farmland size have significant
effects on farmers’ adaptive capacities.

There are several important caveats to the empirical results. First, the potential bene-
fits from future technological advancements induced by climate change are not included
in the estimation. Hence, this study estimates only the lower boundary of adaptation
benefits. Second, forestry and animal husbandry were excluded from the survey. If it
is possible for farmers to adapt to warming by switching land use among crops, animal
husbandry, and forestry, this study would tend to underestimate the benefits of long-run
adaptation. Third, in this partial equilibrium analysis, agricultural prices are assumed to
be constant during climate change. This assumption is reliable if the positive effects in
currently cold regions offset most of the negative effects in currently hot areas. Oth-
erwise, agricultural prices will rise and the benefits of adaptation will be even greater.
Finally, although the model suggests that long-run adaptations have the potential to sig-
nificantly reduce the damage of warming, in the short-run, farmers will still be adapting
to climate change and losses will be greater than what have been predicted by the model
with long-run adaptations.
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