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Abstract
Researchers have spent substantial effort to identify factors influencing pesticide
use intensity. However, few studies have compared the relative importance of
these factors. This study examines four categories of factors that potentially influ-
ence farmers’ pesticide use decisions by evaluating incentivized experiment data,
farm survey data, and remote sensing data in China. Our results suggest that land
diversification has the largest effect on farmers’ pesticide use. Compared with
the most rice-intensive landscape type, less rice-intensive systems cause farm-
ers to spray less on middle rice. Heavy pesticide use intensity is associated with
land fragmentation as small-scale farms still dominate crop production. Farmers’
integrated pest management knowledge has significant effects on pesticide use.
We also find that loss and ambiguity preferences, rather than risk preferences,
are more likely to affect pesticide use intensity.
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1 INTRODUCTION

The negative consequences of pesticide use on human
health and ecosystem services have raised concerns world-
wide. Studies have shown that pesticide exposure causes
acute diseases such as muscular pain and skin irritations

(Atreya, 2008; Mancini, Van Bruggen, Jiggins, Ambat-
ipudi, & Murphy, 2005; Maumbe & Swinton, 2003; Shea-
han et al., 2017) and chronic diseases such as cancer, neuro-
toxicity, and bronchitis (Alavanja, Hoppin, & Kamel, 2004;
Hoppin et al., 2010). Lai (2017) finds that a 10% increase in
rice pesticide use in China negatively affects a key medical
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disability index by 1% for rural residents over 65 years old,
which is equivalent to approximately 2.8 million dollars in
medical and family care costs. The environmental impacts
of excessive pesticide use include the destruction of bene-
ficial natural predators and parasites, pesticide resistance
in pests, groundwater and surface water contamination,
and wildlife losses (Pimentel, 2005; Pimentel et al., 1992).
The environmental costs of using pesticides in the United
States were estimated to be $10 billion annually (Pimentel,
2005).
Pesticide overuse is present in many developing coun-

tries, although some countries are still using pesticides
below an economically efficient level (Ghimire & Wood-
ward, 2013, Zhang, Jiang, & Ou, 2011). Approximately
6 billion pounds of pesticides were applied in 2012 world-
wide, with a total expenditure of nearly $56 billion at the
producer level (Atwood & Paisley-Jones, 2017). In 2015,
China used approximately 1.8 million tons of pesticide
(FAO, 2017), which accounted for 24% of the total vol-
ume worldwide. The pesticide use per hectare in China
is approximately 13 kg, roughly five times higher than the
world average (FAO, 2017).
Scholars with various academic backgrounds have been

working to reduce pesticide use. Economic studies mostly
consider the influence of farmers’ risk preference and
knowledge on pesticide use (e.g., Gong, Baylis, Kozak,
& Bull, 2016, Liu & Huang, 2013). Farmers’ risk prefer-
ences have played a significant role in agriculture produc-
tion, especially in pesticide application (Barham, Chavas,
Fitz, Salas, & Schechter, 2014; Feder, 1980, Isik & Khanna,
2003; Just & Zilberman, 1983; Ward & Singh, 2016). Farm-
ers’ knowledge of integrated pest management (IPM) is
another key factor influencing pesticide use (e.g., Feder,
Murgai, & Quizon, 2010). The effects of land fragmenta-
tion and farm size on farm performance have also been
widely studied (Chen, Huffman, & Rozelle, 2011; Fan &
Chan-Kang, 2005; van den Berg et al., 2007), but few stud-
ies focus on the effects of land consolidation on pesticide
use. As land consolidation in China proceeds, there is a
need to examine the effects of land consolidation on pesti-
cide use. Ecological theory predicts that simplified agricul-
tural landscapes will increase pest severity because fewer
natural enemies and concentrated host plants will further
increase pesticide use (Larsen & Noack, 2017). However,
the role of the landscape in pesticide applications has not
been adequately supported by empirical studies, partially
due to the lack of high spatial resolution crop and insecti-
cide data (Larsen & Noack, 2017).
We first examine the role of farmers’ preferences in agri-

cultural production, including risk, loss, and ambiguity
preferences. Liu and Huang (2013) found that risk-averse
farmers tend to use more pesticides to avoid cotton losses,
while loss-averse farmers tend to use less pesticides in

China. Researchers have also argued that ambiguity aver-
sion is another key factor affecting agricultural produc-
tion (Alpizar, Carlsson, & Naranjo, 2011; Barham et al.,
2014; Takahashi, 2013). Ambiguity aversion is the addi-
tional aversion resulting frombeing unsure about the prob-
abilities of outcomes (Barham et al., 2014). Since farmers
usually do not know the distribution of the impacts of pes-
ticide application on crop yield and human health, ambi-
guity preferences might be more appropriate than risk
preferences.
Farmers’ knowledge may also influence agricultural

production decisions. The influence of farmers’ IPM
knowledge of pesticide use has mixed results. Godtland,
Sadoulet, Janvry, Murgai, and Ortiz (2004) found that
increased IPM knowledge has a significant positive impact
on the productivity of potato production in a field study.
However, Lekei, Ngowi, and London (2014) found that
knowledge of the routes of exposure to the pesticide was
not associated with safety practices in Tanzania. Chen,
Huang, and Qiao (2013) concluded that on the North-
ern China Plain, improving cotton farmers’ awareness
and knowledge could potentially reduce pesticide use by
10–15%.
Ecologists have argued that landscape patterns influ-

ence pesticides because simplified landscapes often lead
to increased pest severity, which leads to higher pesticide
demand (Larsen, 2013; Larsen & Noack, 2017; Meehan,
Werling, Landis, & Gratton, 2011). Agricultural intensifica-
tion has caused landscape simplification due to the expan-
sion of agricultural land, enlargement of field size, and
removal of noncrop habitat. Declining landscape diversity
may affect the functioning of natural pest control because
noncrop land provides habitat, food, and shelter for natu-
ral enemies. Therefore, increased landscape diversification
has the potential to sustain pest control functions (Bianchi,
Booij, & Tscharntke, 2006). Despite the underlying theory
regarding the influence of landscape on pesticide usage,
empirical support is lacking. A recent study by Larsen and
Noack (2017) used data on crop production and insecti-
cide use from over 100,000 field-level observations in Kerr
County, California. They found that higher crop diversity
reduces insecticide use. Dominik et al. (2017) found that
regional-scale landscape heterogeneity explains the com-
position of rice-arthropod communities in the Philippines.
Our study provides the first empirical evidence of the effect
of landscape diversity on pesticide usage patterns based on
remote sensing and ground-truthing data in China.
Our study implemented a large-scale incentivized

experiment in China to solicit a wide spectrum of infor-
mation on farmers’ risk preferences and IPM knowledge,
land consolidation, and landscape diversification. The
comprehensive dataset allows us to examine the relative
importance of the different factors in terms of their effects
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on farmers’ pesticide use decisions. Methodologically, our
paper contributes to the literature by combining revealed
and stated preference data to analyze farmers’ pesticide use
behaviors. There is a large body of literature that combines
the revealed preference with stated preference data, par-
ticularly through survey-based studies (e.g., Adamowicz,
Louviere, &Williams, 1994; Boxall, Englin, & Adamowicz,
2003; Huang, Haab, & Whitehead, 1997; Mark & Swait,
2004). Results are generally improved when stated and
revealed data are jointly used for estimation (Earnhart,
2001; Whitehead, Dumas, Herstine, Hill, & Buerger, 2008).
Our study incorporates the experimental data in addition
to the revealed and stated preference data and provides
a new perspective to investigate farming decisions by
collecting a wide source of information. As a result, our
method potentially reduces the omitted variable bias
when the farming decisions are influenced by individual
preferences reflected in the experimental data.

2 EXPERIMENTAL DESIGN AND
DATA

2.1 Sampling and survey
implementation

Our study was conducted in the northern part of Jiangxi
province in 2014. Rice farmers were surveyed in Jiangxi,
which is one of the major rice production bases and pro-
duces approximately 10% of the rice in China (NBSC,
2015). Double season rice (early rice and late rice), mid-
dle rice after oil rapeseed, and middle rice alone are the
typical crop patterns. Due to its humid subtropical cli-
mate, Jiangxi province suffers from serious pest diseases.
In Jiangxi, approximately 9% of the rice area was dam-
aged by disease andpests each year. The corresponding rice
losses account for approximately 11% of nationwide losses
(NATESC, 2017). The northern part of Jiangxi also has
diverse landscapes, including the plain near the Poyang
Lake and the surrounding mountainous regions. All of
these characteristics make rice growers in Jiangxi province
an ideal site for studying pesticide use patterns.
We selected 20 experimental sites with different land-

scape diversity using the following procedures. Each site
is located in a different village. First, we identified the 3-
hr drive area around Jiangxi Agricultural University (JAU)
for site selection to ensure that live specimens could be
transported between the study sites and JAU by our ecol-
ogist collaborators. Second, we randomly pinned 120 cul-
tivated land plots on the map and calculated the land-
scape percentages within a 2-km radius using a geograph-
ical dataset of remote sensing images. Each site covered
a circle centered at the selected cultivated plot with a 2-

km radius. Third, we selected 40 sites by excluding those
that did not meet our requirements, including plots that
were not accessible by road. A group of ecologists and
economists checked the 40 sites in the field to ensure that
the selected ones would not be threatened by urbanization
and to also ensure that rice and rapeseed oil were the typ-
ical crops. Finally, we narrowed down 20 sites in 20 vil-
lages based on the field check. The study area is shown in
Figure 1.
For each site, we randomly selected 16 middle rice plots

and interviewed 16 farmers who managed the plots at the
time of the survey.We first randomly selected 30 plots from
the map and then checked with the farmers in fieldwork.
We ensured that the 16 selected plots were planted with
middle rice over our survey season, and each plotwas oper-
ated by a different farmer. The farmers were interviewed
face-to-face for the experiment and the survey. We con-
ducted economic experiments to elicit the farmers’ behav-
ioral preferences and used the survey to determine their
IPM knowledge. We also asked the farmers to record infor-
mation on their pesticide usages, including the date, the
amount and the cost of the application as well as who
applied the pesticide.We then recorded the information on
pesticide use reported by the farmers as well as their basic
socioeconomic information.
A group of graduate students in agricultural economics

were selected as interviewers. Another group of eight grad-
uate students from agronomy were selected for ground-
truthing the landscape data. The interviewers were trained
on how to implement the economic experiments and
familiarized with the standardized approach used to test
farmers’ IPM knowledge. The interviewers also con-
ducted two or three practice interviews with real farm-
ers as a pretest to ensure the interview quality before
the actual interviews. To avoid the interviewer effect,
the students were randomly assigned to different farm-
ers. Four subgroups with two students each worked on
ground-truthing. Each subgroup took one day to fin-
ish one-quarter of the whole circle and made correc-
tions on the paper maps if they found the crops in
the field were not the same as those shown on the
map.
In total, 320 respondents in 20 villages/sites completed

the survey. However, 19 respondents did not complete
the entire experiment, resulting in a final sample size of
301 (or 94.06% of the original sample size). We compared
the individual characteristics of the excluded respondents
and the respondents who completed the entire experiment
sequence. Due to the small percentage of incomplete sur-
veys, we did not find significant differences in the observed
individual characteristics, which alleviated concerns that
the exclusion based on the failure to fully complete (or
understand) the experiment was nonrandom.
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F IGURE 1 Study area [Color figure can be viewed at wileyonlinelibrary.com]
Notes: This figure shows the sampling locations for our survey and experiment. The blue dot represents the location of Jiangxi Agricultural
University (JAU). The red dots represent the set of selected sites within a 3-hr drive of JAU. The site selection was based on a number of criteria
including landscape patterns, accessibility to the road, and ground-truthing outcomes.

2.2 Risk, loss, and ambiguity
preferences

We conducted a set of individual risk, loss, and ambigu-
ity preference experiments under the framework of cumu-
lative prospect theory. The experimental design is based
on Liu and Huang (2013), Tanaka, Camerer, and Quang
(2010), and Liu (2013). Subjects were first presented with
a standardized introduction on how to conduct the exper-
iment. For the illiterate farmers, the interviewers read the
instructions for them. Before formal experiments, subjects
practiced one sample choice to make sure that they under-
stand the experiment procedures and decisions. Farmers
were asked to choose either Option A or Option B for each
question. They were presented 35 questions separated into
three series for risk and loss preferences (Tables A1–A3 in
Appendix 1 in the Supporting Information) and 22 ques-
tions into two series for ambiguity preference (Table A4
in Appendix 1 in the Supporting Information). Farmers
were told that they only can switch once from Option A
to Option B. In the experiment, farmers were incentivized
and paid according to the lottery outcomes. The average
compensation for the experiments was designed to match
the farmers’ daily wage, which is approximately 80 yuan

per person per day. Tables A1 and A2 present the two pay-
off matrices used in the experiment to estimate risk prefer-
ences. Table A3 presents the payoff matrix to estimate loss
preference. The final payment was based on the choices
made in a series of experiments to provide economic incen-
tives for the farmers to truthfully reveal their preferences.
The survey lasted approximately 2 hr. The details of the
experiment are included in Appendix 2 in the Supporting
Information.

2.3 Risk and loss preferences

Our utility function follows Tanaka et al. (2010) and
enables the joint estimation of risk aversion, loss aver-
sion, and nonlinear probability weighting. We used a util-
ity function in the form of

𝑈 (𝑥, 𝑦, 𝑝, 𝑞) =

{
𝑣 (𝑦) + 𝜋 (𝑝) (𝑣 (𝑥) − 𝑣 (𝑦)) if 𝑥 > 𝑦 > 0 or 𝑥 < 𝑦 < 0

𝜋 (𝑝) 𝑣 (𝑥) + 𝜋 (𝑞) 𝑣 (𝑦) if 𝑥 < 0 < 𝑦,

)

where the value function

𝑣 (𝑥) =

{
𝑥𝜎 if 𝑥 > 0

−𝜆(−𝑥)
𝜎
if 𝑥 < 0

)
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and the probability weighting function

𝜋 (𝑝) =
1

exp
(
ln

(
1

𝑝

))𝛼 .
In the above equations, parameters p and q are the prob-

abilities associated with outcomes x and y, respectively.
Parameters 𝜎 and 𝜆 denote the concavity of the value func-
tion 𝑣(⋅) and the degree of loss aversion, respectively. 𝑈(⋅)
denotes the individual utility function. The model reduces
to an expected utility model when 𝛼 = 𝜆 = 1. We use
σ as the parameter for the curvature of the value func-
tion, and α indicates the probability sensitivity parameter
in Prelec’s weighting function (Prelec, 1998). When 𝛼 < 1,
the weighting function 𝜋(⋅) is inverted S-shaped and is
consistent with prospect theory (Tversky & Kahneman,
1992), where individuals overweight small probabilities
and underweight large probabilities. Similarly, when 𝛼 >
1, individuals underweight small probabilities and over-
weight large probabilities. A higher 𝜎 (𝜆) implies greater
risk (loss) aversion.
The payoff matrix shown in Tables A1 and A2 was care-

fully designed so that the set of parameters cover a wide
spectrum of individual preferences under the cumulative
prospect theory framework. The Option A columns are
always riskless, while the Option B columns resemble sim-
ple lotteries. The respondents were asked at which point
they were willing to switch to the other option. Following
Liu and Huang (2013), Tanaka et al. (2010), and Liu (2013),
we imposed the monotonic preference restriction where
the respondents were only able to switch their preferences
from the riskless option to the lottery option once. The
individual switching points were used to place a boundary
on the preference parameters based on the utility specifi-
cation. For example, if a respondent switched preference at
Question 6 in Table A1 and switched preferences at Ques-
tion 7 in Table A2, a set of inequalities can be used to spec-
ify the boundaries of the range of 𝜎 and 𝛼. Specifically, we
have

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

5𝜎 > 2.5
𝜎
+

20.5𝜎−2.5𝜎

exp
(
ln
(

1

0.1

))𝛼
5𝜎 < 2.5

𝜎
+

23.5𝜎−2.5𝜎

exp
(
ln
(

1

0.1

))𝛼
20

𝜎
> 2.5

𝜎
+

34.5𝜎−2.5𝜎

exp
(
ln
(

1

0.7

))𝛼
20

𝜎
< 2.5

𝜎
+

36.5𝜎−2.5𝜎

exp
(
ln
(

1

0.7

))𝛼

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Consistent with the literature, we chose the midpoints
in the value ranges and assigned themedian values to indi-
vidual respondents. The detailed calculations can be found
in Tanaka et al. (2010). We also include the corresponding

𝜎 and 𝛼 values for each switching point in Tables A5 and
A6 in Appendix 1 in the Supporting Information. In our
case, a pair of switching points (6, 7) implies that (𝜎, 𝛼) =
(0.7, 0.7) . The parameters chosen in these tables are based
on a scaled version proposed inWard and Singh (2016). Fol-
lowing Tanaka et al. (2010), if an individual chose not to
switch, approximate values near the boundary were used
as the preference parameters.
After identifying 𝜎 and 𝛼, Table A3 was used to esti-

mate the loss aversion parameter 𝜆. When the individual
switched her choice from Option A to Option B, a range of
𝜆 could be identified for each switching point depending
on the value of𝜎. In, TableA7 inAppendix 1 in the Support-
ing Information, we show the threshold value of 𝜆 under
different 𝜎s associated with each question. Based on Table
A7, if the individual switched at Question 4when 𝜎 = 0.5,
then 1.73 < 𝜆 < 2.24.We also used themiddle value of 𝜆 to
approximate individual loss aversion preferences. The dis-
tributions of the parameters are shown in Panel c, Figure 2.
Previous research has found that respondents may

bounce back and forth ifmultiple row switching is allowed,
and the distribution of preferencesmay not be distinguish-
able from one where respondents are making choices at
random (e.g., Reynaud&Couture, 2012). However, switch-
ingmore than once is inconsistent with awell-defined util-
ity function. To check the consistency of our results with
the literature, we compare our results with similar studies.
In our study, themeans of 𝜎 and𝛼 are 0.64 and 0.82 and the
variances are 0.45 and 0.34, respectively. Our 𝜎 and 𝛼 are
slightly higher than the 0.59 and 0.74 estimated in Tanaka
et al. (2010) and the 0.48 and 0.69 estimated in Liu (2013).
The mean and variance for the loss aversion in our sample
are 3.11 and 4.20, respectively. Our estimate of 𝜆 is slightly
higher than the 2.63 estimate in Tanaka et al. (2010) and the
2.25 estimate in Tversky and Kahneman (1992), while it is
slightly lower than the 3.47 estimate in Liu (2013), which
is also based on a sample of Chinese farmers. The distribu-
tion of the estimated parameters are shown in Panels a and
b, Figure 2.1

2.3.1 Ambiguity preference

Ambiguity preference, also known as uncertainty aver-
sion, is defined as the preference for known risks or
uncertainty over unknown risks or uncertainty. The ambi-
guity preference plays an important role in individual

1 In addition, we conducted a simulation exercise where we simulated the
distribution of𝜎 and𝛼 as if the respondentsweremaking randomchoices.
We derived the mean and variance of 𝜎 and 𝛼 based on 10,000 bootstrap
samples and found that the simulated outcomes were significantly differ-
ent from our experimental outcomes at the 0.01 significance level.
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F IGURE 2 Distribution of parameters for risk, loss and ambiguity preferences [Color figure can be viewed at wileyonlinelibrary.com]
Notes: The sigma and alpha are the risk preference measures, lambda is the loss aversion measure, and the theta is the ambiguity aversion
measure.

decision making (Ellsberg, 1961; Hogarth & Kunreuther,
1989; Machina, 2009) and is distinct from risk preference
when the probability of uncertainty is known. However,
few studies use ambiguity measures to analyze farmers’
production behaviors. In our case, the exact consequences
of pesticide (over)use are unknown to the farmers. Due
to the uncertain condition, ambiguity measure is more
appropriate than risk measure. Compared to the risk
preference, the measure of ambiguity preference is rela-
tively new and there is no widely established procedure to
measure or parameterize the ambiguity preference. There
are several distinct measures of ambiguity used in the
literature, including Klibanoff, Marinacci, and Mukerji
(2005), where a function was used to capture ambiguity
aversion, and Engle-Warnick, Escobal, and Laszlo (2007),
where a positive willingness to pay was estimated to avoid
ambiguity. We follow Ward and Singh (2016) based on a

similarity in the research background, where ambiguity
aversion was specified as the ratio of two log utilities and
use a modified multiple price listing approach to elicit the
ambiguity aversion measure.
Specifically, according to Ward and Singh (2016), ambi-

guity aversion is estimated through a sequence of two
experiments. In the first experiment (S1), the subject is
asked to choose between a risky option (Option A in Table
A4) and a riskless option (Option B) with the probability of
win and loss not specified. We assume the lottery for win
and loss at the switching point in the first experiment are
𝑥1 and 𝑦1, respectively, and the riskless option is 𝑥0. There-
fore, we have 𝑈 (𝑥0) = [𝑈(𝑥1, 𝑦1, �̃�, 𝑞)]

𝜃 at the switching
point, where �̃� and 𝑞 are the subjective probabilities asso-
ciated with the win and loss in the lottery, respectively. The
parameter 𝜃 denotes the ambiguity aversion parameter. In
the second experiment (S2), the subject is asked to choose
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between a risky option and a riskless option with the prob-
ability of win and loss specified.We further assume the lot-
tery for win and loss at the switching point in the second
experiment are 𝑥2 and 𝑦2, while the riskless option is 𝑥0.
We have 𝑈 (𝑥0) = 𝑈(𝑥2, 𝑦2, 𝑝, 𝑞) at the switching point,
which further implies𝑈 (𝑥2, 𝑦2, 𝑝, 𝑞)= [𝑈(𝑥1, 𝑦1, �̃�, 𝑞)]

𝜃.
Therefore, we have

𝜃 =
ln (𝑈 (𝑥2, 𝑦2, 𝑝, 𝑞))

ln (𝑈 (𝑥1, 𝑦1, �̃�, 𝑞))
,

where p and q are objective probabilities.2 Data on subjec-
tive probability are obtained by directly asking the respon-
dents. Our results show that when the number of balls
is assumed to be equal (when we use (0.5, 0.5) to sub-
stitute for �̃� and 𝑞), the ambiguity measure has a mean
of 1.0990 and a variance of 0.391. When the number of
balls is imputed using respondents’ subjective statements,
the subjective ambiguity measure has a mean of 1.0987
and a variance of 0.394, which is close to those under the
assumption of an equal number of balls. The distribution
of 𝜃 is shown in Panel d, Figure 2. We further find that
these two measures have a correlation of 0.993. Therefore,
we use only the subjective loss aversionmeasure (probabil-
ity imputed by the subjective statement) in the regression
analysis.3 We find that there is substantial variation in the
estimated parameter though we cannot reject the hypoth-
esis where the mean of ambiguity parameter 𝜃 equals 1.

2.4 Survey data

We invited the farmers to record the details of their pes-
ticide uses for the whole crop season, that is, when they
sprayed, who sprayed, how much pesticide they used, and
how much money was spent on buying pesticides for the
selected plot. The data show that on average farmers spray
3.3 times during middle rice crop season with a minimum
of 0 and a maximum of 7. The average pesticide cost is
about 840 yuan per ha with a minimum of zero yuan
and a maximum of 1,800 yuan. The two variables have a
positive and statistically significant pairwise correlation

2 Note that our ambiguity preference is measured as the ratio of two log
utilities instead of embedded directly in the utility function as the risk
preference parameters.We acknowledge it is not a perfect measure. How-
ever, we think this is themost appropriate one to use based on the current
state of the literature and our research background.
3 The correlation analysis of the parameters for risk, loss, and ambiguity
preferences shows that only two correlation coefficients are statistically
significant (Table A8 in Appendix 1 in the Supporting Information). The
parameters 𝜎 and 𝜆 are significantly negatively correlated with a corre-
lation coefficient of −0.386. There is a significantly positive correlation
between 𝛼 and 𝜃 with a correlation coefficient of 0.387.

coefficient. Figure A1 in Appendix 1 in the Supporting
Information shows that pesticide expenditure for each
spraying time varies within a farm. We also asked farmers
why they spray each pesticide. About half sprays are
preventive. Over a quarter sprays happen because farmers
saw a few pests. Only 10% sprays happen because farmers
noticed many pests.
We tested farmers’ IPM knowledge using subjective

questions during face-to-face interviews following Chen
et al. (2013). Three key questionswere used to test the farm-
ers’ knowledge from three perspectives that is, knowledge
of biocontrol, trust in suggested pesticide dosage on pack-
age instruction, and negative impacts of pesticides on the
environment. Specifically, the first question asks whether
the interviewee knew that spiders are predators in rice.
The second question collects what the interviewee thought
of the suggested amount of pesticide use on the pack-
age instructions. The third one asks whether the farmers
believed that pesticides can pollute underground/surface
water. Question 1 reflects the farmers’ knowledge of bio-
control by the predator-pest relationships in rice fields.
Question 2 reflects the farmers’ knowledge of the scien-
tifically suggested dosage. Question 3 reflects the farmers’
concerns regarding environmental pollution generated by
pesticide use. Our data show that about one-third of farm-
ers knew that spiders are predators in rice. About 43% of
farmers agreed the suggested amount of pesticide use on
the package instruction, while nearly 40% thought the sug-
gested dosage is insufficient. Over 60% of farmers had the
correct knowledge of environmental pollution from pesti-
cide use.
Land consolidation is indicated by the size of the

selected plot. We also collected a large set of information
on individual characteristics, including gender, age, edu-
cation of the person who sprays, and the wealth level of
the farm. We use the total value of durable goods and the
value of the farmer’s house to approximate the level of
wealth (Liu, 2013). Durable goods include common house-
hold items that cost more than 500 yuan. The data show
that the selected plot is small with an average size of 1.3
mu (0.09 ha). Most pesticide spray tasks are done by the
male (87%). The average age of the person who sprays is 54
and the average education is 6 years. The average wealth
level is about 274 thousand yuan.

2.5 Landscape data

Remote sensing digital images with landscape information
were first obtained from the Data Center of the Chinese
Academy of Sciences. Ground-truthing was conducted by
graduate students to cross-check the landscape data of
the 20 sites with the remote picture information. Forty-six
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categories of land use were specified and then classified
into sevenmajor categories for our analysis: early-late rice,
middle rice, other cultivated land, forest, grassland, water,
and built-up land. The landscape data were categorized
into two scale levels. The first level is all the plots within
each site sharing the same landscape data within a circle,
with 2,000m as the radius. The other level is the landscape
data of each plot within a smaller circle, with 500 m as the
radius. For the 2,000-m radius circles, approximately 40%
of the land in the survey area was covered by forest, and
approximately 32% of the land in the area was covered by
early and middle rice. Grassland accounted for approx-
imately 8%. Among the seven categories, water had the
lowest coverage and represented approximately 2.6% of
the total area. For the 500-m radius circles, early-late rice
and middle rice accounted for approximately 15% and 33%,
respectively. Approximately 22% was covered by forest.
The summary statistics of the key variables are pre-

sented in Table 1.We classify the risk parameters into three
categories, extremely risk averse (σ≤0.2, n = 84), moder-
ately risk averse (0.2 < σ≤1, n = 119), and risk seeking
(σ> 1, n= 88).We then compared variables across different
risk categories using the moderate risk averse categories
as the baseline. The results are presented in Table A9 in
Appendix 1 in the Supporting Information. We find that
the extremely risk-averse farmers also tend to be more loss
averse and significantly poorer compared to the moder-
ately risk averse category, consistent with findings inWard
and Singh (2016).We also find that the farmer’s knowledge
is correlated with risk preference. We do not find strong
correlations between the risk preference and pesticide use
measures. Note that we only compare the variables related
to farmers’ behavior or characteristics and exclude vari-
ables such as landscape and plot size.

3 ECONOMETRICMODEL AND
EMPIRICAL RESULTS

In this section, we describe our econometric models and
present empirical results. We also compare the relative
influence of each variable and variable category on farm-
ers’ decisions regarding pesticide use for rice production.

3.1 The regression model

To estimate the impacts of multiple factors on pesticide
use, we set up the following model:

𝑃𝐼ij = 𝛼0 + 𝛼1Preferenc𝑒ij + 𝛼2Kno𝑤ij + 𝛼3𝐿𝑆ij

+ 𝛼4𝐿𝐶ij + 𝜀ij,

where i and j index farmer and village, respectively. The
variable PI represents pesticide use intensity. In our case
we use three measures for pesticide use intensity, that is,
the log form of pesticide expenditures per hectare, log form
of pesticide amount per hectare, and number of sprays to
indicate pesticide use. We also include four broad cate-
gories of explanatory variables, as shown in Table 1. The
first set of variables Preference includes the risk prefer-
ence (𝜎 and 𝛼), loss aversion (𝜆), and ambiguity aversion
(𝜃) measures. The regression results presented here are
based on the subjective loss aversion measure. We have
tried using the experimental measurements and find our
regression results are almost identical due to a high cor-
relation between experimental measure and the subjective
loss aversion measure. We run the models with all the four
variables altogether as explanatory variables (columns (1)
and (5) in Table 2) as well as with the variables included
separately (Columns (2–4) and (6–8) in Table 2).
The second set of variables Know represents the farm-

ers’ IPM knowledge. A dummy variable is used to indi-
catewhether the interviewee knew that spiders are amajor
predator in the rice field, with 1 indicating yes and 0 indi-
cating no. A set of dummy variables are used to measure
the interviewees’ opinions of the suggested amount of pes-
ticide use on the package instructions, with “correct” as
the baseline, and “the suggested amount is less,” “the sug-
gested amount is more,” and “unknown” used for com-
parison. Another dummy variable is used to represent the
interviewee’s opinion of whether pesticides can pollute
ground or surface water, with 1 indicating yes and 0 indi-
cating no.
The third set of variablesLS includes landscape variables

to reflect landscape diversification. We use the percentage
of early-late rice rotations as the baseline. To test the scale
effects, we use landscape data on an area with a radius of
2,000 m and an area with a radius of 500 m. The fourth set
of variable LC is the size of the selected plot to indicate land
consolidation.We also control for the characteristics of the
farmers and farms. A linearmodel is usedwhen the depen-
dent variable is the log form of pesticide expenditures per
hectare, and a generalized Poissonmodel is used when the
dependent variable is the number of sprays. The standard
errors are clustered at the village level.

3.2 Main results

For the alternativemodels using different landscape scales,
we find that all coefficients are similar in the 2,000 m and
500 m models except the landscape effects. We, therefore,
report the results for the 2,000m scalemodel in Table 2 and
the 500 m scale model in Table A10 in Appendix 1 in the
Supporting Information. The results for pesticide amount,
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TABLE 1 Summary statistics of the key variables

Variable Mean SD Min. Max.
Dependent variables
Number of pesticide sprays 3.31 1.16 0 7
Pesticide cost (yuan/ha) 841.20 409.54 0 1,800
Log form of pesticide cost 6.55 0.80 0 7.50
Independent variables
Behavioral preferences
Sigma 0.64 0.45 0.05 1.3
Alpha 0.82 0.35 0.05 1.4
Lambda 3.12 3.20 0.12 8.15
Theta 1.10 0.39 0.66 3
Farmers’ knowledge
Whether the interviewee knows that spiders are
a major predator of hoppers (1 = yes, 0 = no)

0.34 0.47 0 1

What the interviewees think of the suggested amount of
pesticide use on the package instructions

Percentage of “correct” 0.43 0.50 0 1
Percentage of “the suggested is less” 0.39 0.49 0 1
Percentage of “the suggested is more” 0.05 0.22 0 1
Percentage of no idea 0.13 0.34 0 1
Do you think that pesticide can pollute
underground/surface water (1 = yes, 0 = no)

0.64 0.48 0 1

Landscape (radius = 2,000 m)
Percentage of early rice 9.48 9.84 .01 30.58
Percentage of middle rice 22.94 9.54 7.71 40.37
Percentage of other cultivated land 9.08 9.10 .58 33.59
Percentage of forest 39.34 23.16 10.41 77.41
Percentage of grassland 8.12 6.18 1.99 24.66
Percentage of water 2.61 1.19 .85 4.62
Percentage of built-up areas 8.41 4.68 2.68 18.69
Landscape (radius = 500 m)
Percentage of early rice 14.45 16.64 0 62.29
Percentage of middle rice 32.55 15.91 0 78.78
Percentage of other cultivated land 8.71 10.09 0 60.06
Percentage of forest 21.84 19.49 0 97.24
Percentage of grassland 8.14 7.98 0 42.86
Percentage of water 3.14 4.46 0 49.93
Percentage of built-up areas 11.18 7.04 0.11 39.31
Land consolidation
Plot size of the selected plot (mu) 1.3 0.72 0.2 5
Control variables
Gender of the person who sprays (1 =male; 0 = female) 0.87 0.34 0 1
Age of the person who sprays 54.11 9.82 18 81
Education of the person who sprays 6.15 3.14 0 15
Log form of the level of wealth (1,000 yuan) 5.28 0.86 2.484 7.766
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quite similar to those for pesticide cost, are reported in
Table A11 in Appendix 1 in the Supporting Information.
Our results show that loss aversion and ambigu-

ity preferences are associated with pesticide use, while
risk-aversion preferences, which are commonly used in
studies, have no significant effects on pesticide use in terms
of pesticide expenditures and spray frequency. Specifically,
we find that loss aversion (𝜆) negatively affects both pesti-
cide expenditures and spray frequency, although ambigu-
ity aversion (𝜃) significantly affects only pesticide expendi-
tures. Risk preferences (𝜎 and𝛼) have no significant effects
on both pesticide expenditures and spray frequency.
The negative coefficient of loss aversion (column (3)

Table 2) indicates that if a farmer is more loss averse than
the average farmer, she will spend less on pesticide use
and reduce the frequency of pesticide application. One
explanation for the negative coefficient of the loss aversion
measure is that a loss-averse farmer is more concerned
about the negative health effect of the family member who
sprays instead of the negative health impact on consumers,
which is supported by both the theoretical model and the
empirical results in Liu and Huang (2013). Another poten-
tial explanation is that a more loss-averse farmer reduces
pesticide use to avoid the financial losses incurred by
purchasing pesticides. Interestingly, the coefficient of the
ambiguity measure indicates that when a farmer is more
ambiguity averse, she will spend more money on pesticide
use but will not increase spray frequency. Farmers may
view crop loss as more ambiguous and health loss as more
certain. To avoid crop loss, a more ambiguity averse farmer
will increase spending on pesticide use. Our results on the
influence of ambiguity are comparable to those in Barham
et al. (2014) who find that more ambiguity averse farmers
are more likely to adopt genetically modified maize and
soybean in the United States, although Ward and Sigh
(2016) do not find a significant influence of ambiguity
aversion on the adaptation of drought-tolerant rice in
India. In our study, ambiguity aversion and loss aversion
are shown to influence pesticide spending in opposite
directions, which complements the existing evidence on
the influence of loss aversion and ambiguity aversion
on farmers’ behaviors, although previous studies often
examine only one type of preference.
Farmers’ IPM knowledge is also highly associated with

pesticide applications. Farmers who know that spiders are
predators in a rice field spend approximately 10% less on
pesticide expenditures and reduce pesticide application
frequency by approximately 12%, although the coefficient
is borderline significant in the cost model. If the respon-
dent thinks the suggested amount of pesticide use on the
package instruction is low, she will invest approximately
15% more in pesticide use and increase spray frequency by
approximately 13%. In our sample, only approximately 5%

of farmers think that the suggested amount is too high. If
the respondents all have the correct knowledge, they will
reduce pesticide usage regardless ofwhether they think the
suggested amount is too high or too low, as both types are
currently using more pesticides comparing to the baseline.
If a farmer believes that water pollution is caused by pesti-
cide use, she will reduce pesticide expenditures by approx-
imately 20%. These results suggest that improving farmers’
IPM knowledge may reduce pesticide use.
Our empirical results show that landscape diversity at

the 2,000 m scale can influence the composition of the
local ecosystem and change the need to use pesticides,
while the landscape effects at the 500m scale are not signif-
icant. Compared to the most intensive rice system (early-
late rice rotation), the use of less intensive rice systemswill
reduce pesticide use. A 1% increase in the use of single-
season rice (i.e.,middle rice) leads to a reduction of approx-
imately 1.4% in pesticide expenditures (column (1) Table 2).
A 1% increase in a type of cultivated cropland other than
the early-late rice system leads to a reduction of approx-
imately 2.6% in pesticide expenditures and a 0.9% reduc-
tion in pesticide use frequency. A 1% increase in the for-
est will decrease pesticide expenditures by approximately
1% but will not reduce pesticide use frequency. We also
find that a 1% increase in grassland will decrease pesticide
expenditures by approximately 3% and reduce spray fre-
quency by 1.5%. One reason is that if there is more early-
late rice near the middle rice plot, the pests from the early
rice may move to the middle rice in pursuit of food and
habitat. The increased pest density may increase pesticide
use. Other types of cultivated land, forest, and grassland
provide more landscape diversity, which may benefit the
predators. A larger number of predators may reduce pests
and therefore reduce pesticide use. Our results for land-
scape diversity are consistent with those in Meehan et al.
(2011) who used county-level data from the Midwestern
United States to determine that the proportion of harvested
cropland treated with insecticides increased with the pro-
portion of cropland and decreased with the proportion of
seminatural habitat.
Land consolidation is negatively associated with pesti-

cide expenditures. The negative sign of the coefficient for
plot size in the expenditure model indicates that land con-
solidation may reduce the number of pesticide applica-
tions, indicating that farmerswith land fragmentationmay
spend more on pesticide use and that promoting land con-
solidation has the benefit of reducing pesticide use. Due
to the economies of scale, farmers are likely to decrease
the per acre pesticide expenditures when the plot size
increases. The coefficients of land consolidation in the
spray frequencymodel are insignificant, whichmeans that
farmers apply spray frequency on the large plot similar to
that on the small plot.
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TABLE 4 The impact of different variable categories on pesticide use

Omitted variable category F-stat p-Value No. of omitted variables
Pesticide cost model
Behavioral preferences 3.96 .0168 4
Farmers’ Knowledge 2.75 .0492 5
Landscape (radius = 2,000 m) 3.52 .0164 6
Land consolidation 24.07 .0001 1
Spray frequency model
Behavioral preferences 20.57 .0004 4
Farmers’ Knowledge 15.24 .0094 5
Landscape (radius = 2,000 m) 33.81 .0000 6
Land consolidation 1.30 .2548 1

One observation is that the pseudo R2 is only between
0.1 and 0.2. The pseudo R2 reflects the amount of varia-
tions that are explained by our independent variables. In
our survey, we have collected a rich set of variables and
other information such as utility parameters.We consulted
literature using similar methods with different dependent
variables, the pseudo R2 ranges from 0.05 to 0.3. For exam-
ple, Liu (2013) has the R2 value ranging from 0.07 to 0.17,
whileWard and Singh (2016) using randomparameters has
the R2 value of 0.347. Our study is within the range in the
literature.We also run additional robustness checks to con-
trol for the village fixed effects (after dropping the land-
scape variables that are highly correlated with the village
dummies) that have little influence on the estimated coef-
ficients.
In summary, more loss-averse farmer will spend less on

pesticides and reduce spray frequency. In contrast, a more
ambiguity averse farmer will spend more on pesticides but
keep spray frequency unchanged. However, risk aversion,
commonly used in the literature, has no significant effects
on pesticide use in terms of either pesticide cost or spray
frequency. Farmers with better pesticide-related knowl-
edge reduce the number of pesticide applications but keep
pesticide spending unchanged. Farmers living with amore
diversified landscape (or less rice intensive systems) use
less pesticide. Land consolidation is also found to associate
with less pesticide use. Spray frequency ismore sensitive to
the factors in general than money on buying pesticides.

3.3 Relative influences of each variable
category

We next compare the relative importance of each vari-
able and variable category in pesticide use decisions. We
use the standardized coefficient approach to compare the
relative importance of each variable. An R2 comparison
fails to account for the influence of the degree of freedom

(Kvalseth, 1985). We use the F-test to compare the rela-
tive influences of variables in different categories. Table 3
presents the results using the standardized coefficient
approach based on the regression results including the
coefficients that are either significant or close to significant
at the 10% level according to Table 2. Column (1) of Table 3
shows the new coefficients estimates by dropping highly
insignificant variables. Column (2) presents the standard
deviation of the independent variables in our sample. Col-
umn (3) presents the standardized coefficient value calcu-
lated based on corresponding values in Columns (1) and
(2), which can be interpreted as the influence of a one stan-
dard deviation change in the independent variable on the
dependent variable. For example, in the preferences cate-
gory, if a farmer ismore loss averse than the average farmer
by one standard deviation, she will spend 9.3% less money
on pesticide use, and the spray frequency will be reduced
by 20.6%. If he is more ambiguity averse than the average
farmer by one standard deviation, shewill spend 7.2%more
money on pesticide use. In the landscape category, if the
percentage of middle rice at the 2,000 m scale increases by
one standard deviation, the farmers will spend 13% less on
pesticide use. However, a one standard deviation increase
in other types of cultivated land, forest, and grassland at
the 2,000m scale will make farmers spend 22.5%, 20%, and
20.6% less on pesticide use, respectively.
The standardized coefficient approach enables us to

compare the impact of one standard deviation change in
the explanatory variable on the dependent variable (Col-
umn (3), Table 3). The results indicate that the landscape
variables have the largest impacts on pesticide expendi-
tures, followed by loss and ambiguity preferences and the
land consolidation indicators. Farmers’ IPM knowledge
has the smallest impact on pesticide expenditures among
the four categories. However, the order of the importance
of the four categories is slightly different in the spray fre-
quency model. Landscape diversity still has the largest
impact, while the land consolidation indicators have the
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least impact. Four of the top five single variables are land-
scape factors. Plot size, which represents land consolida-
tion, ranks fourth in the cost model, while loss aversion
ranks fourth in the frequency model.
Table 4 shows the F-test results that evaluate the restric-

tion imposed on the full, unrestricted model when a cer-
tain category of variables is constrained to be zero. Results
show that all four categories have significant influences
on pesticide cost and spray frequency except land consol-
idation on spray frequency. The largest restriction on the
cost comes from land consolidation, while in frequency
model the largest impacts come from the landscape cate-
gory. In the costmodel, omitting the preference and knowl-
edge categories impose the second and third most signifi-
cant restrictions on the full model with the p-values less
than 0.02. But the restriction from the landscape category
imposes the largest restriction in the frequency model,
which suggests that landscape has the largest effects on
spray frequency but comparatively smaller effects on pes-
ticide cost. Omitting the preference parameters category
and farmers’ IPM knowledge category have similar restric-
tions on the full model for the spray frequency, indicating
that the risk preferences and IPM knowledge have similar
effects on spray frequency according to the F-test results.

4 CONCLUSION AND DISCUSSION

This paper examines four important categories of factors
that may influence farmers’ pesticide use in rice fields in
China. We discuss the regression results and then use the
standardized coefficient approach and F-stats to compare
the relative importance of each individual parameter as
well as the importance of the different categories of vari-
ables. Our results suggest that all four categories of factors
have significant, but different, effects on pesticide use. The
order of the importance of these categories provides evi-
dence for policymakers to set priorities for policy imple-
mentation. Among the four categories, landscape diversi-
fication has the largest effect on pesticide expenditures and
spray frequency. Our result is consistent with the ecologi-
cal literature indicating that a more natural habitat may
support pest control (Larsen & Noack, 2017). However, a
comprehensive analysis of the underlying mechanism of
landscape effects on pesticide use goes beyond the pur-
pose of this paper. Further studies are needed to investigate
landscape effects from ecological perspectives.
Land consolidation has a significant effect on pesticide

expenditures. As land consolidation is promoted, farmers’
pesticide expenditures may be reduced. Land fragmenta-
tion has been a barrier for small-scale farms seeking to
supply agricultural products. As urbanization increases,
increasing numbers of agricultural laborers migrate to

cities for off-farm jobs. Both the pushing and driving fac-
tors lead to land consolidation and large-scale farms in
China. The Chinese government also promotes land con-
solidation through policy support, such as enhancing land
rental markets. Our results provide empirical evidence on
the benefits of land consolidation in terms of reducing agri-
cultural pollution through pesticide use reduction. Farm-
ers’ loss and ambiguity preferences and IPM knowledge
also have significant effects on pesticide use.
There are a few challenges that could not be fully

addressed in our analysis. First, we used solicited risk pref-
erence data to infer agricultural production decisions, and
the risk or ambiguity preferences exhibited in the exper-
iments may not be representative of the farmers’ prefer-
ences under more general circumstances. However, Liu
and Huang (2013) argued that preferences in monetary
domains should be the same as preferences in nonmon-
etary domains. Future research could explore the implica-
tions and the transferability ofmonetary and nonmonetary
risk and use a reliable approach to elicit risk preferences
in various domains. Second, standard practice only reports
themean values and standard errors of the risk parameters.
However, the variability of the risk parameters may signif-
icantly affect the associated dependent variables. Sproul
and Michaud (2017) found that a two-component mixed
model better explains the field experiment data used in
Tanaka et al. (2010), which implies that the elicitation and
modeling approaches may have room for improvement.
Our study implies several factors that may influence the

pesticide usage, which provides a basis for future studies
that use alternative data or methods to identify potential
causal relationships to further improve our understand-
ing regarding the mechanisms behind these influences.
In addition, the relationship between those aversion mea-
sures and optimal pesticide use may not be necessarily lin-
ear due to the respective roles of measures in the utility
function. Future research could explore the implications of
this limitation and use alternative methods to better incor-
porate different roles of the utility parameters.
The Chinese government is making substantial efforts

to reduce agricultural nonpoint pollution and is focus-
ing on pesticides. Our results suggest agricultural policy
seeking to optimize pesticide use should consider multiple
factors, especially landscape diversification, land consoli-
dation, and the farmers’ characteristics. Efforts aimed at
altering farmers’ pesticide use behavior from only one per-
spective will have limited impacts. Government policies
reducing agricultural land simplification and promoting
land consolidation may help reduce pesticide use. Future
research could explore the generalizability of our results
and ways to consider individual preferences in designing
pesticide use policy to account for farmer heterogeneity in
terms of behaviors and choices.
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