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A B S T R A C T   

Understanding the impacts of weather shocks on various economic sectors is crucial for designing effective 
climate policies. While previous studies have focused mainly on the agricultural and industrial sectors, there has 
been limited exploration of weather effects on the service sector, particularly in emerging economies. This study 
addresses this research gap by analyzing high-frequency movie-viewing records of 49 major cities in China 
between 2015 and 2017 to examine the effects of weather shocks on in-theater movie recreation. The findings 
reveal that both extreme temperatures and pouring rains significantly reduce movie demand. We also investigate 
the relationship between weather and movie supply at both extensive and intensive margins, and confirm the 
weather-movie demand results are not driven by supply-side dynamics. The back-of-the-envelope calculation 
indicates that extreme temperatures led to a loss of 5.14 million moviegoers and a 311.32 million Chinese Yuan 
loss in box office revenue for the Chinese film market in 2017, while losses due to pouring rains amounted to 1.28 
million audiences and 69.16 million Chinese Yuan in revenues. This paper highlights the significant damage 
caused by current extreme weather conditions to China’s film market and emphasizes that such damage is ex
pected to worsen in the future with the intensification of climate change.   

1. Introduction 

The increasing frequency of weather shocks has detrimental effects 
on various aspects of society. In order to develop effective policies to 
address the climate challenge, it is crucial to have a comprehensive 
understanding of how weather affects all sectors of the economy (Dell 
et al., 2014; Hsiang et al., 2017). However, the existing literature pri
marily focuses on the agricultural sector (Deschênes and Greenstone, 
2007; Schlenker and Roberts, 2009; Chen et al., 2016; Zhang et al., 
2017) and the industrial sector (Dell et al., 2012; Zhang et al., 2018; 
Chen and Yang, 2019; Somanathan et al., 2021). Unfortunately, studies 
examining the impact of weather on the service sector using high- 
frequency micro-data are still limited. 

Examining the effects of weather conditions on consumer demand in 
the service sector poses unique challenges due to two key attributes. 
Firstly, while consumer demand for agricultural and industrial products 
remains relatively stable over long periods, such as quarterly or yearly 
scales, demand for services can be influenced by weather changes 
occurring at shorter frequencies. This observation is supported by Lai 
et al. (2022), who find that food consumption exhibits less sensitivity to 

temperature fluctuations than entertainment spending, as evidenced by 
detailed bank card transaction data in China. This characteristic suggests 
that relying on coarse time-aggregated data may overly smooth out 
consumers’ immediate responses to weather, underscoring the need for 
more granular data to identify weather impacts accurately. Secondly, 
the effects of weather on both the demand and supply of the service 
sector are intertwined, making it challenging to isolate the demand ef
fect from the whole. For example, precipitation not only leads to an 
increase in demand for taxi services but also incentivizes taxi drivers to 
turn their leisure time into work time (Connolly, 2008), thereby aug
menting the supply of taxi services (Brodeur and Nield, 2018). Failing to 
account for such supply-side behaviors could introduce biases in esti
mating the impact of weather on consumer demand in the service sector. 
Consequently, it is imperative to employ appropriate methodologies to 
disentangle rigorously the direction of these biases and provide accurate 
assessments. 

This study aims to address these research gaps by utilizing high- 
frequency movie-viewing data from 49 cities in China between 2015 
and 2017. We focus on examining the impact of weather shocks, i.e., 
temperature and precipitation, on the demand for movie recreation. The 

* Corresponding author. 
E-mail addresses: xic20@mails.tsinghua.edu.cn (C. Xi), xiewei.ccap@pku.edu.cn (W. Xie), cxg@swufe.edu.cn (X. Chen), HeP3@cardiff.ac.uk (P. He).  

Contents lists available at ScienceDirect 

Energy Economics 

journal homepage: www.elsevier.com/locate/eneeco 

https://doi.org/10.1016/j.eneco.2023.107038 
Received 9 February 2023; Received in revised form 29 August 2023; Accepted 8 September 2023   

mailto:xic20@mails.tsinghua.edu.cn
mailto:xiewei.ccap@pku.edu.cn
mailto:cxg@swufe.edu.cn
mailto:HeP3@cardiff.ac.uk
www.sciencedirect.com/science/journal/01409883
https://www.elsevier.com/locate/eneeco
https://doi.org/10.1016/j.eneco.2023.107038
https://doi.org/10.1016/j.eneco.2023.107038
https://doi.org/10.1016/j.eneco.2023.107038
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eneco.2023.107038&domain=pdf


Energy Economics 127 (2023) 107038

2

choice to focus on China’s film industry offers unique advantages in 
understanding the relationship between weather conditions and service 
demand. Firstly, China is one of the largest consumers of recreational 
services globally (Hermosilla et al., 2018),1 and the film industry is a 
rapidly growing sector within China’s service industry. As shown in 
Fig. 1, between 2012 and 2019, China witnessed significant growth in 
box office revenues, cinema screens, and the volume of movie tickets 
sold, with average annual growth rates of 21.8%, 27.2%, and 22.0%, 
respectively. Exploring the context of China can enable us to understand 
how weather shocks can influence recreational services. Secondly, box 
office data provide accurate electronic records, serving as the founda
tion for revenue sharing between filmmakers and theaters, and it is 
publicly available. This readily available data ensures convenience in 
compiling and analyzing the relevant information while minimizing 
measurement errors associated with movie attendance variables. Lastly, 
the fine-grained data allow us to examine the causal effects of weather 
on movie demand by leveraging the plausibly exogenous variations in 
weather conditions. Furthermore, the data allow us to explore whether 
the relationship between weather and movie supply has any confound
ing effects on our results, ensuring the robustness of our findings. 

To examine the effects of temperature and precipitation on movie 
demand, we aggregate movie attendance data from the theater to the 
city level, adopt a widely used semi-parametric approach, and control 
for various spatial, temporal, and movie fixed effects. The results indi
cate that compared to the reference category, 20–25 ◦C, extreme heat 
with a daily average temperature exceeding 25 ◦C reduces 3.38%, 
5.61%, and 1.02% in audience numbers, box office revenues, and 
attendance rates, respectively. Extreme cold with temperatures below 
− 5 ◦C results in a more substantial impact, causing a decrease of 7.87%, 
13.51%, and 1.83% in audience numbers, box office revenues, and 
attendance rates, respectively. Precipitation also significantly dampens 
movie demand, and its effects become stronger as the intensity of 
rainfall increases. This relationship indicates that movie attendance is 
negatively affected by rain, with heavier rainfall resulting in more 
substantial decreases in demand. 

We develop a framework at the city-day level to address concerns 
about potential biases in our weather-movie demand estimates due to 
the omission of contemporaneous movie supply variables. This frame
work allows us to explore the relationship between weather conditions 
and movie supply from both extensive and intensive perspectives. We 
find extreme weather is almost unrelated to movies’ premiere frequency 
and screening frequency after controlling for the city, year, month-of- 
year, day-of-week, and national holiday fixed effects. This finding sug
gests that the relationship between weather and movie supply does not 
affect our baseline results, reinforcing the robustness of our findings 
regarding weather’s impact on movie demand. 

Our findings carry significant policy implications. By conducting a 
back-of-the-envelope calculation, we estimate that extreme tempera
tures (pouring rains) led to a loss of 5.14 (1.28) million moviegoers and a 
loss of 311.32 (69.16) million Chinese Yuan in box office revenues to 
China’s film market in 2017. These monetized results indicate sub
stantial economic losses experienced by the film industry in China due to 
current weather shocks. Furthermore, as the intensity and frequency of 
extreme weather increase under future climate change, we anticipate 
that the damage inflicted by extreme weather events will escalate 
further. Therefore, addressing the challenges posed by climate change 
not only has environmental implications but also becomes crucial for 
developing the service sector in the economy. Additionally, our findings 
suggest that the service sector will transform in response to future 

climate change. As climate change intensifies, residents’ demand for 
offline recreation services is expected to face continued limitations. This, 
in turn, will reshape the energy requirements of physical entertainment 
businesses and influence energy consumption patterns during the travel 
process. 

In a related study by He et al. (2022), the impact of air pollution on 
movie attendance was examined, with weather conditions included as 
controls. However, our paper differs from He et al. (2022) in several key 
aspects. Firstly, we utilize more recent movie attendance data from 2015 
to 2017, and we have a larger sample size with 1273 non-rescreened 
movies. In contrast, He et al. (2022) used a 2012 to 2014 dataset 
encompassing 829 movies. Secondly, in addition to the audience scale 
used by He et al. (2022), we also incorporate two other variables, i.e., 
box office revenues and attendance rates, to provide a more compre
hensive understanding of consumers’ movie demand. Thirdly, our study 
takes a more rigorous approach to examine the potential bias in demand- 
side estimates due to the association between movie supply and 
weather. In contrast, He et al. (2022) primarily overlooked this 
consideration. Lastly, as a supplementary analysis, we go a step further 
by employing thermal inversion as an instrumental variable for air 
pollution and report the impact of air pollution on move attendance in 
Supplementary Analysis. 

This paper is connected to a broader body of literature and con
tributes to the existing literature in several ways. Firstly, it stands out as 
the first study to examine the causal impact of weather shocks on de
mand for a specific service industry in an emerging economy. Previous 
studies have predominantly focused on developed economies (Dundas 
and von Haefen, 2020; Chan and Wichman, 2020) or aggregated ex
penditures (Lai et al., 2022). By addressing this research gap, our study 
sheds light on the unique dynamics of weather effects on the service 
sector in emerging economies. Moreover, we introduce an empirical 
framework that allows us to uncover the direction and magnitude of 
biases that may arise from supply-side responses when evaluating the 
impact of weather on service demand from the demand-side perspective. 
This consideration is crucial for analyzing service activities where de
mand and supply are intertwined, such as the behavior of taxi drivers 
(Brodeur and Nield, 2018), courier services (Wang et al., 2022), and 
food delivery riders. 

Secondly, this paper also extends the previous weather-recreation 
demand literature in the context of one of the largest recreation mar
kets worldwide. Previous studies evaluate weather impacts on recrea
tional activities but focus on non-market-based activities, such as 
recreational fishing (Dundas and von Haefen, 2020) and recreational 
cycling (Chan and Wichman, 2020). Since these activities are non- 
market-based, they bring challenges in assessing the welfare conse
quences of weather shocks.2 Our study focuses on a market-based rec
reation activity, and welfare changes are thus calculated explicitly 
leveraging the price signal. Moreover, since the value standard of 
market-based recreation is clear, revenues of these activities can be 
classified into the service sector output and be a component of aggregate 
national output. Therefore, market-based recreation is at least as 
essential as non-market-based recreation in assessing the socioeconomic 
impacts of weather and climate. This paper also enriches the literature 
that explores weather impacts on recreation at the aggregated level, 
such as Graff Zivin and Neidell (2014) and Lai et al. (2022). 

Thirdly, this paper also dialogues with studies exploring network 
externalities and learning effects on movie consumption, in which 
plausible exogenous weather shocks are instrumented for abnormal 

1 According to box office revenue, China was the second largest movie market 
worldwide between 2015 and 2019. In 2020, benefiting from the effective 
control of the coronavirus epidemic, China overtook North America for the first 
time to become the world’s largest movie market. See: https://www.globalt 
imes.cn/page/202101/1211591.shtml. 

2 These stuides use the value of a recreational trip estimated by prior studies, 
combined with weather-recreation response patterns to approxly calculate 
welfare changes. Dundas and von Haefen (2020) assume the value of a lost 
fishing trip is 30$ based on results from meta-analysis studies. Chan and 
Wichman (2020) approximate the average consumer surplus for cycling ac
cording to the Recreation Use Values Database. 
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moviegoing, such as Moretti (2011) and Gilchrist and Sands (2016).3 

This paper finds that weather effects on moviegoing are contempora
neous and not homogeneous across days after the movie premiere. This 
pattern suggests the role of ex-ante priors and ex-post information in 
shaping weather effects and also deepens our understanding of the 
validity of instruments in aforecited studies. 

2. Data 

To examine the impacts of weather conditions on movie viewings, 
we compile a comprehensive dataset by combining micro-data from 
multiple sources. 

2.1. Movie-viewing data 

The viewing record micro-data of movies screened in 49 cities across 
China from 2015 to 2017 are retrieved from an online box office sta
tistics website. The dataset provides valuable information such as the 
movie’s name, the location of the theater, the number of seats, the ticket 
price, the opening time, and the audience numbers for each screening. 
Next, 338 Chinese cities are divided into five groups by the China 
Business Network, a leading financial media group in China.4 For our 
analysis, we select from the 1st-tier cities, new-1st-tier cities, and 2nd- 

tier cities, which collectively accounted for 68.37% of all box office 
revenues in China’s film market in 2017.5 We conduct our analysis at the 
movie-city-day level. To mitigate the influence of movie-screening fre
quency on our estimates, we calculate the average audience number per 
screen, the average box office revenues per screen, and the average 
attendance rate for each movie in each city. To ensure the reliability of 
our results, we exclude the rescreened movies from the initial movie- 
viewing database, narrowing it down to 1273 newly released movies 
(out of the initial 1361 movies) for our baseline analysis. 

2.2. Movie-rating data 

The movie-rating data come from Douban.com, one of’China’s most 
popular movie review websites. The overall rating, i.e., a score between 
2 and 10, measures the quality of a movie. The website also provides 
other characteristics of movies, including the premiere date, movie 
language, runtime, number of ratings, and production countries. Based 
on the premiere date information, we calculate the number of days since 
the movie premiered. 

2.3. Meteorological and air quality data 

Station-day level meteorological data, including temperature, pre
cipitation, atmospheric pressure, relative humidity, wind speed, and 
cloud cover, are obtained from the China Meteorological Data Service 
Center.6 We aggregate the meteorological data to the city-day level 
using the inverse distance weighting method with a 100 km radius, as 
broadly used in the literature (Deschênes and Greenstone, 2007; Zhang 
et al., 2017). Our baseline results are robust to other radius settings, such 
as 150 and 200 km. Considering that air quality may affect moviegoers’ 
decision-making (He et al., 2022), we obtain the air quality index (AQI), 

Fig. 1. The booming film market in China from 2012 to 2019. 
Notes: Data are from https://www.statista.com/. 

3 Moretti (2011) uses weather conditions on the day of a movie release and 
the day before the release as instrumental variables for the movie-specific 
surprise in the first week, with surprise measured by the residual from a 
regression of the first-week ticket sales on the number of screens. Gilchrist and 
Sands (2016) use weather shocks on opening weekend as instrumental variables 
for contemporaneous abnormal viewership. Both studies find weather shocks 
are related to movie consumption, and the IV strategy helps to distinguish 
confounding network externalities and learning effects.  

4 These indicators include commercial resources, transportation convenience, 
resident activity, lifestyle variety, and future adaptability. The five groups of 
cities are 1st-tier cities (4 cities), new-1st-tier cities (15 cities), 2nd-tier cities 
(30 cities), 3rd-tier cities (70 cities), 4th-tier cities (90 cities), and 5th-tier cities 
(129 cities). Table A1 provides the detailed city ranking list. See https://www. 
yicai.com/news/5293378.html for more information. 

5 The box office revenues data for each city in 2017 are from https://www. 
askci.com/news/chanye/20180116/094421116104.shtml. Also see Table A1. 

6 CMDSC is an official institution under the jurisdiction of the China Mete
orological Administration. More details about the meteorological data can be 
found at http://data.cma.cn/en. 
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a comprehensive air quality measure, from the Ministry of Ecology and 
Environment of China. Air quality data are aggregated to the city-day 
level by averaging hourly AQI within a day. 

Table 1 shows the summary statistics of our data. The average ticket 
price of the sample is 36.89 Chinese Yuan, close to the national level 
between 2015 and 2017, reflecting that our sample is external 
comparability.7 

3. Empirical strategy 

3.1. Baseline specification 

We focus on examining the effects of temperature and precipitation 
on audiences’ movie demand. Considering the nonlinear relationship 

between weather and recreation activities as found by ongoing studies 
(Chan and Wichman, 2020; Dundas and von Haefen, 2020; Lai et al., 
2022), we propose the Eq.(1), a semi-parametric model with high- 
dimensional fixed-effects (HDFE) to identify the impact of plausible- 
random weather variations on moviegoing: 

Vicd =
∑

j
αjTbinj

cd +
∑

k
βkPbink

cd +Wcdγ +ϕAQIcd +Micdλ+ θi + τc

+ ρd + ξDsP + εicd

(1) 

Vicd refers to a set of movie-viewing demand variables, including the 
log of the number of audiences per screen, the log of box office revenues 
per screen, and the attendance rate for movie i screening in city c on date 
d.8 Tbinj

cd represents a set of temperature bins that equal one if the daily 
average temperature of city c on date d falls into the j-th bins and zero 
otherwise. To explore the effects of the entire temperature distribution 
on moviegoing, we construct nine bins with 5 ◦C as the interval. The nine 
temperature bins are <− 5, − 5–0, 0–5, 5–10, 10–15, 15–20, 20–25, 
25–30, and > 30 ◦C. In practice, as revealed by our data, the 20–25 ◦C 
bin is designated as the reference group, in which the human body 
usually feels comfortable and owns the largest number of audiences. 
Therefore, the coefficient αj we are interested in should be interpreted as 
the relative impact of temperatures within the j-th bins on moviegoing 
compared to the reference temperature range. Pbink

cd indicates a set of 
precipitation bins, and five bins are constructed based on the official 
classification of precipitation grades.9 According to the daily 24-h 
accumulated precipitation, <0.1, 0.1–10, 10–25, 25–50, and > 50 mm 
are assigned to ‘drizzle’, ‘light’ rain, ‘moderate’ rain, ‘heavy’ rain, and 
‘torrential’ rain bins, respectively. We omit the ‘drizzle’ bin as the 
reference group, which accounts for 65.9% of the observations. There
fore, the coefficient βk captures the relative effects of various rainfall 
intensities on moviegoing compared to no-rain days. 

Wcd is a vector of weather controls, including air pressure, humidity, 
wind speed, and cloud cover. We further control for AQIcd to remove the 
confound of air pollution on weather effects identification (He et al., 
2022). To mitigate potential estimation bias caused by movie-supply 
factors that are simultaneously related to weather and viewing avail
ability, we include two movie-and-date-varying variables Micd: average 
ticket price and the total number of screenings. Taking advantage of the 
high-frequency data, we control for abundant fixed effects to make 
weather variations plausibly exogenous to time-variant unobservables 
to identify the causal effects of weather on moviegoing. The movie fixed 
effects θi capture all time-invariant movie attributes. City-level features 
related to moviegoing and do not change over time are absorbed by city 
fixed effects τc, such as the administrative level and preference for movie 
types. We use the day fixed effects ρd to strictly control for time-varying 
shocks common to all cities, such as weekends and holidays, and 
national-level seasonal changes in movie market popularity. At last, we 
control for days-since-premiered (DsP) fixed effects ξDsP to remove the 
decaying trend of movie demand after a movie premiered (Gilchrist and 
Sands, 2016), as shown in Fig. A1. Standard errors are clustered at the 
movie level to allow demand for the same movie to be arbitrarily 
correlated over time and across cities. 

Table 1 
Summary statistics.   

Mean SD Min Max Sample 
size 

Panel A: Movie-viewing variables 
Average number of 

audiences per 
screen (Persons) 

17.04 27.59 0 1324 789,807 

Average box office 
revenues per 
screen (Chinese 
Yuan) 

637.59 1089.18 0 65,490.2 789,807 

Average 
attendance rate 
(%) 

15.35 20.83 0 100 789,807 

Number of 
screenings 16.32 32.97 1 866 789,807 

Average ticket 
price (Chinese 
Yuan) 

36.89 8.99 4 223 789,807 

Number of days 
since the movie 
premiered (days) 

13.75 13.00 0 100 789,780  

Panel B: Movie quality and attributes 
Douban rating 

(2–10 scores) 
5.20 1.82 2.1 9.3 1193 

Number of ratings 
(Persons) 

50,884.74 115,337.1 0 1,071,835 1361 

Runtime (minutes) 99.68 13.99 64 192 1361  

Panel C: Meteorological and air quality variables 
Temperature (◦C) 17.10 9.97 − 26.1 36.5 53,274 
Precipitation (mm) 3.61 11.91 0 253 53,274 
Atmospheric 

pressure (kPa) 
99.15 4.54 80.41 104.32 53,274 

Relative humidity 
(%) 

72.02 16.84 8 100 53,274 

Wind speed (m/s) 2.27 1.09 0 10.7 53,274 
Cloud cover (%) 66.30 16.62 0 90 49,222 
AQI 75.57 46.02 12 500 53,704 
PM2.5 (μg/m3) 47.04 39.34 0 881 53,704 
PM10 (μg/m3) 80.53 58.51 0 1398 53,704 
TI (1 = thermal 

inversion occurs 
more than four 
times in a day, 0 
= otherwise) 

0.34 0.48 0 1 53,704 

Notes: The observations in Panel A are viewing records for each movie at the city- 
day level. In Panel B, Douban ratings for 163 movies are missing because of too 
few reviews. 

7 The average movie ticket price in China was 35.0, 33.3, and 34.5 Chinese 
Yuan in 2015, 2016, and 2017, respectively, based on the China Film Industry 
Analysis Report. See: http://data.chinabaogao.com/chuanmei/2019 
/12304H3162019.html. 

8 Specifically, the average audience number per screen is defined as (total # 
of audiences watching the movie i screening in city c on date d)/ (total # of 
screens showing movie i in city c on date d). The average number of box office 
revenues per screen is defined as (total box office revenues of movie i screening 
in city c on date d)/ (total # of screens showing movie i in city c on date d). The 
average attendance rate is defined as (total # of audiences watching the movie i 
screening in city c on date d)/ (total # of seats in screening rooms showing 
movie i in city c on date d).  

9 China Meteorological Administration publishes the standard GB/T 
28592–2012 for precipitation grades. See: https://www.cma.gov.cn/zfxxgk/ 
gknr/flfgbz/bz/202209/t20220921_5097915.html. 
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3.2. Parsimonious model and moviegoing losses due to weather shocks 

The bins specification of Eq.(1) allows us to examine the effects of the 
entire temperature distribution and precipitation on movie demands. 
Motivated by Barreca et al. (2016) and Burgess et al. (2017), we apply a 
more parsimonious model focusing on extreme temperatures and 
pouring rains. This approach is convenient for exploring the heteroge
neity of weather on moviegoing, and more importantly, it provides a 
realistic counterfactual for calculating moviegoing losses due to weather 
shocks in China during the sample period. The parsimonious model is 
proposed as Eq.(2): 

Vicd = δ1ExtreHighTcd + δ2ExtreLowTcd + πPouringRcd
+Wcdγ + ϕAQIcd + Micdλ + θi + τc + ρd + ξDsP + εicd

(2) 

ExtreHighTcd and ExtreLowTcd are two dummy variables that indicate 
the upper and lower tails of the daily temperature distribution, and 
cutoffs for extremely cold and hot days are − 5 and 30 ◦C, respectively. 
Therefore, coefficients δ1and δ2 are interpreted as the effects of extreme 
heat and cold on movie demand, compared to a broader reference 
temperature range: -5–30 ◦C. In addition, we combine the extreme heat 
and cold in subsequent analyses to obtain a comprehensive extreme 
temperature variable, ExtreTcd, which equals one if the daily mean 
temperature is below − 5 ◦C or above 30 ◦C. PouringRcd is a pouring rain 
day dummy and equals one if daily accumulated precipitation exceeds 
25 mm, accounting only for 3.97% of our sample. Thus, π depicts the 
impact of extreme precipitations on moviegoing, compared to mild 
precipitation situations, including drizzle, light, and moderate rains. The 
other settings in Eq.(2) are the same as in Eq.(1). 

Moreover, the specification of Eq.(2) provides a counterfactual 
context to calculate moviegoing losses caused by weather shocks in 
China. For temperature shocks, the intuition is to calculate the increase 
in audiences and box office revenues if all extreme temperatures are 
altered to moderate temperatures, − 5–30 ◦C. The difficulty in the 
calculation is that not all in-theater movie consumption in sample cities 
is covered by our data. Thus we recover the calculation from the sample 
level to the city level by using the ratio of moviegoers/revenues in our 
sample to numbers officially announced. Specifically, Eq.(3) is applied 
to calculate the loss in audience scales in all sample cities caused by 
extreme heat and cold: 

ΔAudienceT =
∑

c
ηc×

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑

d
1(ExtreHighTcd)×Audiencecd ×

(
1

1+ δ̂1
− 1

)

+
∑

d
1(ExtreLowTcd)×Audiencecd×

(
1

1+ δ̂2
− 1

)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(3)  

where ηc denotes that for city c, the ratio of the official audience scale 
listed in Table A1 to the annual number of moviegoers recorded by our 
data. Audiencecd represents the total number of moviegoers in city c on 
date d. 1

(
ExtreHighTcd

)
and 1(ExtreLowTcd)indicate whether date d in 

city c is an extremely hot/cold day. δ̂1and δ̂2 are estimated by Eq.(2). 
For precipitation shocks, we aim to calculate the additional gains in 

moviegoing from replacing realistic pouring rains with normal precipi
tation. Still using audience size as an instance, the calculation is pre
sented by Eq.(4): 

ΔAudienceP =
∑

c
ηc ×

{
∑

d
1(PouringRcd)×Audiencecd ×

(
1

1 + π̂ − 1
)}

(4)  

where 1
(
PouringRcd

)
denotes whether the accumulated precipitation of 

city c on date d is above 25 mm and π̂ is estimated by Eq.(2). The other 
settings in Eq.(4) are the same as in Eq.(3). The above logic also applies 
to calculating the loss in box office revenues caused by weather shocks. 

3.3. Challenges from the weather-movie supply nexus 

We exploit plausible random weather shocks that deviate from local 
norms to causally identify the impact of weather on movie demand after 
controlling for abundant spatial and temporal fixed effects. However, a 
challenge is raised that our specification as Eq.(1) does not fully include 
movie-supply factors, and the estimate of weather-movie demand may 
be biased if omitted factors are also linked to the weather. We ease this 
challenge in two ways. First, we control for movie supply variables 
available in our database Micd, ticket price, and screening frequency for 
the specific movie to mitigate the omission bias as much as possible. 
Second, we directly examine the relationship between weather and 
movie supply behaviors in this section and thereby clarify the direction 
and extent of potential bias in weather-movie demand estimates. 

The weather may be associated with both extensive and intensive 
margins of movie supply. From the extensive margin, weather status 
may be correlated with movie premiere decisions. King et al. (2017) 
theoretically suggest optimal premiere strategies vary across movie 
quality.10 Since audiences’ enthusiasm and sensitivity to movie quality 
are not uniform within a week and across a year, the distribution of 
premieres is expected to reflect hotspots of movie demand- mainly on 
weekends and holidays (Einav, 2010). Our data provide a more detailed 
description of this inference. In Panel A of Fig. A2, movie premieres are 
dominantly concentrated on Fridays within a week, and an explanation 
is that it helps to attract weekend audiences and contribute to a higher 
early-stage box office. Moreover, across a year, as shown in Panel B of 
Fig. A2, the peak of movie premieres mainly occurs in July to September 
and November to December, which correspond to summer vacation and 
Lunar New Year, respectively. Since extreme heat usually happens in the 
summer and extreme cold usually happens in the winter, extreme tem
peratures overlap with the peak of movie premieres. While premiere 
timing may not be causally affected by the weather but rather by pro
ducers’ and distributors’ pursuit of word-of-mouth, awards, and box 
office, the correlation between weather and premieres can moderate 
the availability of a specific movie and further transmit to audience 
demand. 

For the intensive margin, the nexus of weather and movie supply is 
more nuanced. Once a movie has premiered, theater owners can adjust 
screening schedules based on their expectations of movie performance, 
reflected in screening frequency changes for a specific movie within a 
day, in which subtle real-time weather conditions can be essential fac
tors. Weather shocks affect the spread of word-of-mouth for a movie and 
dampen subsequent demand (Moretti, 2011; Gilchrist and Sands, 2016), 
which further leads theaters to reduce scheduling to mitigate financial 
losses. Nevertheless, the weather-movie screening relationship remains 
to be empirically examined. 

We apply the specification of Eq.(5) to explore the association be
tween weather and movie supply at the city-day level: 

Scd =
∑

j
αjTbinj

cd +
∑

k
βkPbink

cd +Wcdγ +ϕAQIcd + τc +ϑyear + ζMoY

+ϖDoW + χholiday + εcd

(5)  

where Scd is a vector of movie supply variables. Outcomes for the 
extensive margin are the number of premiere movies in city c on date d, 
and a dummy for at least one movie premiered. For the intensive margin, 

10 King et al. (2017) demonstrate that high-quality movies are suitable for 
premieres during high-demand and high-quality elasticity periods, while low- 
demand and less quality-sensitive periods are appropriate for premieres of 
low-quality movies. 
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the outcome is the total number of movies screened in city c on date d. 
We flexibly control for the city (τc), year (ϑyear), month-of-year (ζMoY), 
day-of-week (ϖDoW), and national holiday (χholiday) fixed effects to cap
ture the distribution of the movie premieres presented in Fig. A2.11 

Therefore, αj and βk describe the linkage between temperature and 
precipitation to movie supply, respectively. Standard errors are clus
tered at the city level in Eq.(5). 

4. Empirical results 

4.1. Baseline findings 

Fig. 2 illustrates the impact of weather shocks on moviegoing using 
the semi-parametric bins specification, while detailed results can be 
found in Table A2. We observe an inverted U-shaped dose-response 
relationship between temperature and moviegoing (Fig. 2A), which 
aligns with previous studies on specific outdoor recreation in North 
America (Chan and Wichman, 2020; Dundas and von Haefen, 2020), as 
well as research on aggregated recreation time use (Graff Zivin and 
Neidell, 2014) and entertainment consumption (Lai et al., 2022). 
Furthermore, the statistically significant effects of temperature on movie 
demand are primarily observed in the extreme temperature ranges. 
Specifically, temperatures below − 5 ◦C and above 30 ◦C show signifi
cant impacts on moviegoing, while a large range of moderate temper
atures, − 5 to 30 ◦C, yield insignificant or marginally significant 
coefficients. The effects of extreme heat and cold on moviegoing are 
asymmetrical, with extreme cold having a slightly stronger dampening 
effect. For instance, compared to the reference category, an extremely 
cold day with a temperature below − 5 ◦C is associated with a 7.87%, 
13.51%, and 1.83% reduction in audience numbers, box office revenues, 
and attendance rate, respectively. On the other hand, extreme heat with 
a temperature over 30 ◦C leads to a 3.38% decrease in audiences, a 
5.61% decline in box office revenues, and a 1.02% drop in the atten
dance rate. 

We turn to the effect of precipitation shocks on moviegoing, as 
presented in Panel B of Fig. 2. According to the official criteria, the daily 
24-h accumulated precipitation is classified into five groups, and 
‘drizzle’ with precipitation below 0.1 mm is adopted as the reference 
category. As rainfall rises, the reduction effect of precipitation on 
moviegoing increases monotonically. In terms of audience scale, the 
move from no rain to light rain is accompanied by a 1.45% drop in 
audience. When precipitation intensifies to moderate rain, audience size 
experiences an additional 0.92% reduction. Under the most severe 
conditions- heavy and torrential rain, audiences significantly decreased 
by 3.49% and 4.62%, respectively, compared to the no rain status. The 
damage of precipitation on other movie demand outcomes also exists, as 
indicated by the detailed estimated coefficients in Table A2. 

The feature that moviegoing responds almost entirely to temperature 
extremes motivates us to extend the interval of temperature reference. 
Therefore, we employ the parsimonious model presented by Eq.(2) to 
directly estimate the effect of extreme temperatures rather than tem
perature variations. Based on the estimated temperature response 
pattern, we define temperatures below − 5 ◦C as extremely low and 
above 30 ◦C as extremely high. We further combine two dummies to 
obtain an integrated extreme temperatures measure. Since precipitation 
monotonically damages movie demand, we conservatively define the 
pouring rain day with daily accumulated precipitation over 25 mm. 

Table 2 reports the results from the parsimonious specification, 
where we use two separate extreme temperature variables in Panel A 

and the combined variable in Panel B. We found that both extremely 
high and low temperatures reduce moviegoing compared to a broader 
range of moderate temperatures, − 5–30 ◦C, and the magnitude is 
slightly greater for extreme cold, consistent with the insights from the 
temperature bins specification above. Panel B indicates that on a day 
with an extreme temperature, moviegoers, revenues, and the up rate 
significantly decline by 3.80%, 6.21%, and 1.07%, respectively. More
over, even compared to a more normal range of precipitation, the 
pouring rain still significantly reduces demand for movie recreation. 
Given that the parsimonious specification has clear economic meaning 
and convenience of interpretation, we will primarily rely on that for the 
subsequent analysis. 

4.2. Robustness checks 

We conduct various attempts to check the robustness of the above 
baseline findings, including altering the specification setting and being 
cautious about potential outliers. 

4.2.1. Model specification 
In the baseline model, we establish causal identification by relying 

on exogenous weather fluctuations while controlling for various fixed 
effects. Here we further control for city-by-month fixed effects, which 
can flexibly help to capture local time trends and isolate residual 
weather shocks that deviate more randomly from the local norm. It is 
important to note that stricter control can limit the available variations 
and potentially lead to attenuation bias in weather estimates (Fisher 
et al., 2012). The results of the model with city-by-month fixed effects 
are graphically presented in Fig. 3. Due to space constraints, we only 
report the estimates for movie audiences, but it is worth mentioning that 
the results for other movie demand outcomes are very similar and are 
reported in Fig. A3. We observe that after the inclusion of city-by-month 
fixed effects, the magnitude of weather shock effects decreases slightly 
than baseline results but remains statistically significant. 

Moreover, since we control for day fixed effects in the preferred 
specification to absorb common daily shocks across sample cities, one 
may be concerned that the setting is too stringent for available weather 
residuals. We then adjust day fixed effects to a set of the year, month-of- 
year, day-of-week, and holiday fixed effects and confirm estimates from 
the temporal-relaxed specification are very close to baseline results. We 
also change the cluster level of standard errors from the movie to the 
city, which allows for serial correlation of movie demand within a city 
and audiences’ contemporaneous choosing across multiple movies. The 
city-level clustering specification leads to less precise estimations of 
weather shocks, but statistical significance is still maintained. The cloud 
cover rate is essential for weather control since it is correlated with 
temperature and rain, and cloudiness is often thought to be linked to 
subtle emotions. The cloud cover variable faces a proportion of 7.9% 
missing in the sample. We remove the cloud cover from weather controls 
and confirm that its missing observations do not shake baseline results. 

To test whether baseline results are sensitive to the bandwidth of 
temperature bins, we replace the temperature bin width in Eq.(1) with 
3 ◦C to allow for a more flexible response of moviegoing to temperature, 
and the category 30–33 ◦C is omitted as the reference group. Fig. 4A 
shows that results under a narrower temperature bin width are consis
tent with the baseline findings, with almost only extreme temperatures 
significantly reducing moviegoers.12 We then check whether baseline 
findings still hold under alternative nonlinear specifications. Similar to 
Cui (2020), we propose a fourth-order polynomial function to flexibly 
capture the global nonlinear effect of weather on movie demand, that is: 

11 We are grateful to the referee for suggesting control for holiday fixed ef
fects. Holiday information for 2015–2017 is from the State Council website. 
See: https://www.gov.cn/zhengce/content/2014-12/16/content_9302.htm; 
https://www.gov.cn/zhengce/content/2015-12/10/content_10394.htm; 
https://www.gov.cn/zhengce/content/2016-12/01/content_5141603.htm. 

12 Due to the space limitation, Figure 4 only reports results for audience size, 
and results for other moviegoing outcomes are reported in Figures A4. 
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Vicd =
∑4

k=1

(
αkTk

cd +βkPk
cd

)
+Wcdγ+ϕAQIcd +Micdλ+θi +τc +ρd +ξDsP+εicd

(6)  

and apply marginal effects ∂Vicd/∂Tcd and ∂Vicd/∂Pcd to describe the 
weather effects on moviegoing, which depend on the specific weather 
level at which to be estimated, rather than anchoring to a fixed reference 
weather interval as in Eq.(1). Fig. 4B indicates that on the left side of 
comfort temperatures, a decrease in temperature continuously hampers 
audience size, with a stable but marginally significant estimate of mar
ginal effects. When the temperature exceeds 25 ◦C, the marginal in
crease in temperature significantly reduces moviegoers. These findings 
are consistent with the relationship between temperature and movie 
demand revealed by the bin model. Fig. 4C shows that additional pre
cipitation reduces movie demand throughout the distribution, but esti
mates of heavy rain with daily cumulative precipitation above 30 mm 
are less precise due to limited observations. These results confirm that 
the nonlinear effects of weather on moviegoing are robust under the 
alternative polynomial specification. 

In the baseline analysis, temperature bins are constructed by the 
daily average temperature. To extract useful information provided by 
diurnal variation in temperature, we conduct a sinusoidal interpolation 
between daily maximum and minimum temperatures following Tack 
et al. (2015) and obtain the temperature for each hour within a day. 
Table A3 presents the results of the temperature bins model constructed 
by hourly level temperatures within a day. Extreme heat and cold are 
still found to own the most pronounced and statistically significant 
marginal damages on movie demand, which reflects our baseline find
ings are robust under the aggregated hourly temperature measurement. 

Fig. 2. Impacts of temperature and precipitation on movie demand. 
Notes: The points are estimated by Eq.(1), and shaded areas are the 95% confidence interval. In Panel A, the reference temperature bin is 20– 25 ◦C. In Panel B, the 
reference precipitation bin is 0– 0.1 mm (light drizzle). 

Table 2 
The effects of weather shocks on movie demand.   

ln(audience) ln(box office revenues) attendance rate  

(1) (2) (3) 

Panel A: Separated extreme temperature variables 
ExtreHighT − 0.0315*** − 0.0571*** − 0.8650***  

(0.0111) (0.0168) (0.2495) 
ExtreLowT − 0.0488*** − 0.0704** − 1.4209***  

(0.0188) (0.0292) (0.3346) 
PouringR − 0.0266*** − 0.0418*** − 0.3930***  

(0.0073) (0.0125) (0.1312) 
Controls Y Y Y 
Fixed effects Y Y Y 
Observations 721,308 721,308 721,308 
R-squared 0.2957 0.2937 0.2042  

Panel B: Combined extreme temperature variables 
ExtreT − 0.0380*** − 0.0621*** − 1.0736***  

(0.0102) (0.0155) (0.2076) 
PouringR − 0.0270*** − 0.0422*** − 0.4067***  

(0.0073) (0.0125) (0.1316) 
Controls Y Y Y 
Fixed effects Y Y Y 
Observations 721,308 721,308 721,308 
R-squared 0.2957 0.2937 0.2042 

Notes: Controls include weather controls- air pressure, humidity, wind speed, 
cloud cover, and AQI, and movie-supply controls- ticket price and screening 
frequency; Fixed effects include movie FE, city FE, day FE, and days-since- 
premiered FE; The reference group for extreme temperature variables is 
− 5–30 ◦C, and the reference group for PouringR is 0-25 mm. Standard errors in 
parentheses are clustered at the movie level. *** p < 0.01; ** p < 0.05; * p < 0.1. 
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4.2.2. Exclude potential outliers 
We exclude potential outliers from the following aspects to investi

gate their disturbance to baseline results. First, considering audiences’ 
preferences for rescreened movies may differ from newly released 
movies, 88 rescreened movies are excluded from the baseline analysis. 
Now we reinclude these rescreened movies and no longer control for 
days-since-premiered fixed effects. Second, we exclude observations 
with ticket prices above the 95th percentile or below the 5th percentile 
of the movie ticked price distribution, and then samples with a price 
range from 21.13 to 52.62 Chinese Yuan are used to produce estimates. 

At last, the abnormal screening behavior of theaters may cause un
expected results. Therefore, we exclude movie samples screened for 
fewer than seven days during the sample period. Movies that have 
experienced considerable success at the box office or have had word-of- 
mouth may be postponed to go offline, thus having screening days far 
exceeding other movies.13 We remove movie samples screened for >80 
days in each city to avoid biased results by these blockbuster movies. As 
shown in Fig. 3, the magnitude of weather effects on movie demand is 
still stable after considering potential outliers. 

Another concern is that the air quality variable in the baseline 
specification may be endogenous, which may mislead estimates of 
weather effects. We overcome the challenge by using thermal inversions 
to instrument air quality (Fu et al., 2021; Godzinski and Castillo, 2021) 
and reaffirm the robustness of baseline weather effects. We provide a 
more detailed discussion in Appendix Supplementary Analysis and 
compare our air pollution-moviegoing findings with He et al. (2022). 

4.3. Exploration of the channel 

The observed relationship between weather shock and movie de
mand suggests a pattern of avoidance behavior among residents. When 
faced with extreme weather conditions, individuals tend to adjust their 
activities to minimize exposure and potential damage (Graff Zivin and 

Neidell, 2014). Nevertheless, the decision to go to movies during 
extreme weather is influenced by the initial location of potential audi
ences. On the one hand, if individuals are already indoors when extreme 
weather occurs, the inconvenience and discomfort of going outside to 
the theater may dampen their enthusiasm for moviegoing. On the other 
hand, if the audience is outdoors when extreme weather strikes, the 
unpleasant conditions may actually encourage them to seek shelter and 
entertainment in the comfort of a theater, as most theaters offer air- 
conditioned environments. As a result, the weather-movie demand 
relationship is shaped by these two opposing channels, which depend on 
the population’s location within the city at a specific moment. Unfor
tunately, we cannot explicitly separate and analyze these two channels 
due to the lack of real-time information on population locations, such as 
data from mobile phone records (Li et al., 2023). 

We adopt an indirect approach to explore the mechanism. Our idea is 
that on weekends or holidays, the initial location of most residents is at 
home, and if extreme weather occurs at this time, its impact is expected 
to be dominated by the first channel. We interact weather shocks with 
the weekends or holidays dummy and report results in Table 3. The 
result shows that when recreational peaks are met with severe weather, 
the damage of extreme temperatures and pouring rains on movie de
mand is amplified. Moreover, once interactions are introduced, the es
timate of the single extreme temperature variable is no longer 
significant, indicating that the effect of extreme temperatures on 
moviegoing is almost concentrated at the peak period of recreational 
demand. The coefficients of precipitation interactions remain negative 
but are weaker in statistical significance. The exploration demonstrates 
that the impacts of weather shocks on movie demand, as illustrated in 
Fig. 2, are at least partially explained by the disutility caused by un
pleasant weather on the way out. The channel echoes the literature on 
avoidance behaviors to weather shocks (Deschênes, 2014). 

4.4. Back-of-the-envelope calculation 

Leveraging the parsimonious model proposed in section 3.2, we 
calculate the loss of moviegoers and box office revenues in 49 cities 
caused by weather shocks. Since official statistics on movie audiences 
and revenues for each city are unavailable for 2015 and 2016, we focus 
the calculation on 2017 in this section. Estimates of extreme tempera
tures, δ̂1 and δ̂2, and pouring rain, π̂, are reported in Table 2. 

The back-of-the-envelope calculation indicates that for 49 cities, 
extreme heat caused a 4.36 million loss in moviegoers and a 273.43 

Fig. 3. Robustness checks: the effects of weather shocks on movie audiences. 
Notes: Solid dots represent the point estimate results, each from a separate regression. Horizontal solid lines indicate the 95% confidence interval. 

13 Generally, the average screening duration for a movie is 30–40 days 
depending on its popularity. Part of high reputation movies are sometimes 
postponed to go offline, but repeated postponement crowd out other movies 
and may cause dissatisfaction from audiences. For example, Wolf Warriors 2 
premiered on July 27, 2017 nationwide, and the distributor announced that it 
would be postponed for one more month on August 15 and September 28, 
respectively. These decisions caused dissatisfaction among viewers on Weibo, 
with some of them even believing that postponements are politically motivated. 
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million loss in box office revenues, and extreme cold led to a 0.78 million 
loss in audiences and a 37.89 million loss in revenues in 2017. If heavy 
and torrential rains were replaced with mild precipitation, it would gain 
an additional 1.28 million moviegoers and a 69.16 million revenue. 
These results suggest that weather shocks cause a tremendous toll on 
movie demand nationwide. 

Two notes on the calculation are provided here. First, the calculation 
focuses on quantifying the loss of moviegoers and revenues, while other 
consumption attached to movie recreation, such as snacks sales and 
movie peripheral products sales, is not included due to the lack of in
formation. Therefore, the concise calculation should be interpreted as a 
lower bound of the impact of weather shocks on the offline film industry. 
Second, we restrict the analysis year to 2017 due to data limitations. 
However, once the data are available, the calculation logic can be 
extended to other periods and regions. 

5. Further analysis 

5.1. Examine the weather-movie supply relationship 

Following the specification of Eq.(5), we examine the relationship 
between weather and movie supply from both the extensive and inten
sive margins after controlling for the city, year, month-of-year, day-of- 
week, and national holiday fixed effects. Results are reported in Fig. 5. 

From the extensive margin, there is no significant difference in the 
number of movies premiering on days with a temperature below 20 ◦C. 
However, the premiere frequency positively correlates with the tem
perature after the temperature exceeds 20 ◦C. When altering the 
outcome to the premiere dummy, estimates of temperature indicators 
are almost insignificant, as shown in subfigure (b) of Panel A. We find 
the premiere frequency is slightly higher on days of heavy and torrential 
rains (subfigure (a) of Panel B), and one explanation is that pouring rains 
are more frequent in summer, which is also the peak season for movie 
demand. Nevertheless, the dummy for at least one movie premiere is not 
correlated with precipitation (subfigure (b) of Panel B). These findings 
suggest that weather conditions are mostly unrelated to movie supply 

Fig. 4. Robustness checks: temperature effects on movie audiences under alternative specifications. 
Notes: In panel A, red points denote point estimates based on Eq.(1), but alter 3 ◦C as the interval and 20– 23 ◦C as the reference group. Blue dashed lines represent 
the 95% confidence interval. In Panels B and C, the solid black line represents the marginal effect of temperature/ precipitation under a fourth-order global nonlinear 
specification, as proposed by Eq.(6), and black dashed lines denote the 95% confidence interval. 
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from the extensive margin. Although heat days are associated with a 
higher frequency of movie premieres, this linkage implies a higher 
movie availability on extreme heat days, and hence, Eq.(2) only un
derestimates the damage of extreme temperatures on movie demand. 

From the intensive margin, the frequency of movie screenings is 
slightly higher on days with a temperature range from 0 to 15 ◦C. Since 
we mainly focus on the effect of extreme temperatures, this correlation 

does not shake our findings. Subfigure (c) of Panel B presents that pre
cipitation is not significantly correlated with movie screening frequency. 

In summary, we find extreme weather is less connected with movie 
supply, and if any, the weather-movie supply relationship only leads to 
conservative estimates of weather shocks on movie demand. 

5.2. Lagging effects 

We further explore whether the past weather shocks have affected 
the current movie demand. To examine this, we extended Eq.(2) by 
including the lag terms of extreme temperatures and pouring rains for up 
to ten days.14 The graphical representation of the lagged effects of 
weather shocks on movie audiences is shown in Fig. 6. Similar patterns 
for other movie outcomes can be observed and are illustrated in Fig. A5. 
In Fig. 6A, we observe that only extreme temperatures occurring on the 
current day significantly negatively affect movie audiences. However, 
the effects of extreme temperatures from the past ten days are estimated 
to be statistically insignificant. Fig. 6B demonstrates that current heavy 
rainfall has a pronounced negative impact on movie demand. Interest
ingly, we find that a rainstorm occurring one week prior slightly in
creases the current number of audiences. One possible explanation is 
that the unexpected rainfall prompts individuals with pre-planned 
movie viewings to reschedule and already-planned audiences to shift 

the demand to a week later. However, this relationship disappears when 
examining the attendance rate, as indicated in Panel B of Fig. A5. 

In conclusion, audiences’ movie recreational demand primarily 

Table 3 
Mechanism exploration.   

ln 
(audience) 

ln(box office 
revenues) 

attendance 
rate  

(1) (2) (3) 

ExtreT*weekends or 
holidays 

− 0.0409*** − 0.0568*** − 0.8625***  

(0.0120) (0.0199) (0.2525) 
PouringR*weekends or 

holidays 
− 0.0234* − 0.0307 − 0.5128**  

(0.0136) (0.0231) (0.2580) 
ExtreT − 0.0090 − 0.0217 − 0.4616  

(0.0134) (0.0204) (0.3117) 
PouringR − 0.0194** − 0.0322** − 0.2409  

(0.0086) (0.0150) (0.1573) 
Controls Y Y Y 
Fixed effects Y Y Y 
Observations 721,308 721,308 721,308 
R-squared 0.2957 0.2937 0.2043 

Notes: Controls include weather controls- air pressure, humidity, wind speed, 
cloud cover, and AQI, and movie-supply controls- ticket price and screening 
frequency; Fixed effects include movie FE, city FE, day FE, and days-since- 
premiered FE; The reference group for extreme temperature variables is 
− 5–30 ◦C, and the reference group for PouringR is 0-25 mm. Standard errors in 
parentheses are clustered at the movie level. *** p < 0.01; ** p < 0.05; * p < 0.1. 

Fig. 5. The relationship between weather and movie supply. 
Notes: The points are estimated by Eq.(5), and shaded areas are the 95% confidence interval. In Panel A, the reference temperature bin is 15– 20 ◦C. In Panel B, the 
reference precipitation bin is 0– 0.1 mm (light drizzle). 

14 We also try weather lags of more than ten days, and coefficients of higher- 
order lag terms are found to be almost insignificant. 
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responds to contemporaneous weather shocks and is less sensitive to 
extreme weather realized in the recent past. 

5.3. Heterogeneity 

We examine the heterogeneity of weather effects across city tiers, 
movie quality, and movie life cycle by interacting weather dummies 
with heterogeneity indicators following Zheng et al. (2019). The het
erogeneity results are illustrated in Figs. 7 and 8. Due to the space 
limitation, we only show the results with the outcome as audience size, 
and results for other moviegoing outcomes are provided in Figs. A6 and 
A7. 

5.3.1. City tiers 
Based on the China Business Network classification, 49 sample cities 

are divided into 1st-tier, new 1st-tier, and 2nd-tier cities. The film 
market is more active in high-tier cities on average. In 2017, 1st-tier 

cities accounted for 20.23% of national box office revenues, while the 
share in new 1st-tier and 2nd-tier cities are 26.26% and 21.88%. Fig. 7 
confirms that the damage of weather shocks on movie demand appears 
in 1st-tier and new 1st-tier cities, with the former owning a slightly 
larger magnitude. This result is consistent with findings in Table 3, 
suggesting that markets with strong demand for moviegoing are more 
vulnerable to external weather shocks. While in 2nd-tier cities, estimates 
of weather shocks are insignificant due to the limited fan base and lower 
market activity. 

5.3.2. Movie quality 
According to Douban ratings, movie samples are divided equally into 

four groups to examine the heterogeneity of movie quality. Fig. 7 in
dicates that the effect of weather is concentrated in medium-quality 
movies, while estimates for the highest (top 25%) and lowest (bottom 
25%) quality movies are insignificant. High-quality movies often boast 
intriguing scripts, sufficient production budgets, and star appearances, 

Fig. 6. Lagging effects of weather on movie audiences. 
Notes: Solid dots represent the point estimate results, and vertical solid lines indicate the 95% confidence interval. Panel A and Panel B are obtained from a com
bined regression. 

Fig. 7. Heterogeneity effects of weather on movie audiences: city tiers and movie quality. 
Notes: Solid diamonds and squares represent point estimation results, each group from a separate regression. Horizontal dashed lines indicate the 95% confi
dence interval. 
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which attract audiences to attend theaters, even if they may be exposed 
to unpleasant weather. As a comparison, the audience size for low- 
quality movies stagnates at a low level and is insensitive to weather 
shocks since audiences are reluctant to go for them. 

5.3.3. Movie life cycle 
The audience of a movie is not constant but gradually declines after 

its premiere, as shown in Fig. A1. Fig. 8 illustrates the impact of weather 
shocks on audience size in the early stage of a movie’s life cycle, i.e., in 
the first ten days after its premiere. We find that the significant damp
ening of extreme temperatures on movie demand occurs within 3–7 days 
after the premiere, while the effects of pouring rain are concentrated in 
the first three days after the premiere. On the one hand, audience de
mand for a movie is strongest in the opening week, and unexpected 
weather shocks significantly reduce movie recreation. On the other 
hand, for potential audiences with imprecise priori of the movie, their 
attending decisions are affected by feedback from early adopters 
through network externalities and social learning (Moretti, 2011; Gil
christ and Sands, 2016). That means the sudden weather shocks during 
the fermentation period of word-of-mouth can profoundly damage its 
performance. We provide new insights for understanding the effect of 
weather conditions on movie performance by focusing on the early 
period of its life cycle rather than on opening weekends, as Gilchrist and 
Sands (2016). 

6. Conclusion and discussion 

In this study, we analyze the impact of weather shocks on movie 
demand using a comprehensive dataset of high-frequency moviegoing 
records for 49 major cities in China from 2017 to 2019. Our results 
reveal that both extreme temperatures and pouring rains have signifi
cant negative effects on audiences’ demand for movies, with the impact 
more pronounced during weekends and holidays. Hence, avoiding 
disutility from extreme weather in outgoing is an essential explanation 
for the reduction of movie audiences. To ensure the validity of results, 
we develop a rigorous framework that addresses potential biases arising 
from the interplay between weather and movie supply. We emphasize 
the importance of considering these supply-side factors when studying 
the relationship between weather demand for services. By providing a 
reference empirical framework, we contribute to the existing literature 
and encourage further research to explore the theoretical market cor
relations and characterize these behaviors through structural estimates. 

Two caveats should be considered regarding our study. First, our 

analysis focuses on a relatively short sample period of three years, which 
may limit the generalizability of our findings. Audiences’ offline movie 
demand can be dramatically affected by economic policies and systemic 
preference changes, such as the COVID-19 pandemic and travel re
strictions. Therefore, caution should be exercised when interpreting the 
external validity of our results. To fully understand the long-term effects 
of climate change on movie recreation, an accurate projection of the 
future development of China’s film industry would be necessary. How
ever, such projections fall out of the scope of the paper, and we do not 
attempt to extrapolate our baseline results to the end of the century, as 
commonly done in climate literature. 

Second, we use the reduced-form specification to identify the causal 
effect of weather on offline movie demand. However, the increasing 
frequency of extreme weather may benefit online movie viewing de
mand and other indoor recreational activities. Exploring the reshaping 
of climate for recreational demands relies on more detailed data and 
structural estimation designs. 
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Fig. 8. Heterogeneity effects of weather on movie audiences: movie life cycle. 
Notes: Solid diamonds represent point estimation results, and all are from a combined regression. Vertical solid lines indicate the 95% confidence interval. 
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